معرفی شرکت ها


amr-logic-converter-0.9.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Convert Abstract Meaning Representation (AMR) into first-order logic
ویژگی مقدار
سیستم عامل -
نام فایل amr-logic-converter-0.9.0
نام amr-logic-converter
نسخه کتابخانه 0.9.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده David Chanin
ایمیل نویسنده chanindav@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/amr-logic-converter/
مجوز MIT
# AMR Logic Converter [![ci](https://img.shields.io/github/actions/workflow/status/chanind/amr-logic-converter/ci.yaml?branch=main)](https://github.com/chanind/amr-logic-converter) [![Codecov](https://img.shields.io/codecov/c/github/chanind/amr-logic-converter/main)](https://codecov.io/gh/chanind/amr-logic-converter) [![PyPI](https://img.shields.io/pypi/v/amr-logic-converter?color=blue)](https://pypi.org/project/amr-logic-converter/) Convert Abstract Meaning Representation (AMR) to first-order logic statements. This library is based on the ideas in the paper ["Expressive Power of Abstract Meaning Representations", J. Bos, Computational Linguistics 42(3), 2016](http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00257). Thank you to [@jobos](https://github.com/jobos) for the paper! ## Installation ``` pip install amr-logic-converter ``` ## Usage This library parses an AMR tree into first-order logic statements. An example of this is shown below: ```python from amr_logic_converter import AmrLogicConverter converter = AmrLogicConverter() AMR = """ (x / boy :ARG0-of (e / giggle-01 :polarity -)) """ logic = converter.convert(AMR) print(logic) # boy(x) ^ ¬(:ARG0(e, x) ^ giggle-01(e)) ``` ### Programmatic logic manipulation The output from the `convert` method can be displayed as a string, but it can also be manipulated in Python. For instance, in the example above, we could also write: ```python converter = AmrLogicConverter() AMR = """ (x / boy :ARG0-of (e / giggle-01 :polarity -)) """ expr = converter.convert(AMR) type(expr) # <class 'amr_logic_converter.types.And'> expr.args[0] # Atom(predicate=Predicate(symbol='boy', alignment=None), terms=(Constant(value='x', type='instance', alignment=None),)) ``` ### Working with alignment markers This library will parse alignment markers from AMR using the [penman library](https://penman.readthedocs.io/en/latest/), and will include [Alignment](https://penman.readthedocs.io/en/latest/api/penman.surface.html#penman.surface.Alignment) objects from penman in `Predicate` and `Const` objects when available. For example, we can access alignment markers like below: ```python converter = AmrLogicConverter() AMR = """ (x / boy~1 :ARG0-of (e / giggle-01~3 :polarity -)) """ expr = converter.convert(AMR) expr.args[0].alignment # Alignment((1,)) expr.args[1].body.args[1].alignment # Alignment((3,)) ``` ### Existentially Quantifying all Instances In ["Expressive Power of Abstract Meaning Representations"](http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00257), all instances are wrapped by an existence quantifier. By default `AmrLogicConverter` does not include these as it's likely not useful, but if you'd like to include them as in the paper you can pass the option `existentially_quantify_instances=True` when constructing the `AmrLogicConverter` as below: ```python converter = AmrLogicConverter(existentially_quantify_instances=True) AMR = """ (x / boy :ARG0-of (e / giggle-01 :polarity -)) """ logic = converter.convert(AMR) print(logic) # ∃X(boy(X) ^ ¬∃E(:ARG0(E, X) ^ giggle-01(E))) ``` ### Coreference Hoisting When an instance is coreferenced in multiple places in the AMR, it's necessary to hoisting the existential quantification of that variable high enough that it can still wrap all instances of that variable. By default, the existential quantifier will be hoisted to the level of the lowest common ancestor of all nodes in the AMR tree where an instance is coreferenced. However, in ["Expressive Power of Abstract Meaning Representations"](http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00257), these coreferences are instead hoisted to the maximal possible scope, wrapping the entire formula. If you want this behavior, you can specify the option `maximally_hoist_coreferences=True` when creating the `AmrLogicConverter` instance. This is illustrated below: ```python AMR = """ (b / bad-07 :polarity - :ARG1 (e / dry-01 :ARG0 (x / person :named "Mr Krupp") :ARG1 x)) """ # default behavior, hoist only to the lowest common ancestor converter = AmrLogicConverter( existentially_quantify_instances=True, ) logic = converter.convert(AMR) print(logic) # ¬∃B(bad-07(B) ∧ ∃E(∃X(:ARG1(B, E) ∧ person(X) ∧ :named(X, "Mr Krupp") ∧ dry-01(E) ∧ :ARG0(E, X) ∧ :ARG1(E, X)))) # maximally hoist coferences converter = AmrLogicConverter( existentially_quantify_instances=True, maximally_hoist_coreferences=True, ) logic = converter.convert(AMR) print(logic) # ∃X(¬∃B(bad-07(B) ∧ ∃E(:ARG1(B, E) ∧ dry-01(E) ∧ :ARG0(E, X) ∧ :ARG1(E, X))) ∧ person(X) ∧ :named(X, "Mr Krupp")) ``` ### Using Variables for Instances If you want to use variables for each AMR instance instead of constants, you can pass the option `use_variables_for_instances=True` when creating the AmrLogicConverter instance. When `existentially_quantify_instances` is set, variable will always be used for instances regardless of this setting. ## Misc Options - By default variables names are capitalized, but you can change this by setting `capitalize_variables=False`. - By default, relations like `:ARG0-of(X, Y)` have their arguments flipped in logic and turned into `:ARG0(Y, X)`. If you don't want this normalization to occur, you can disable this by setting `invert_relations=False`. ## Contributing Contributions are welcome! Please leave an issue in the Github repo if you find any bugs, and open a pull request with and fixes or improvements that you'd like to contribute. Ideally please include new test cases to verify any changes or bugfixes if appropriate. This project uses [poetry](https://python-poetry.org/) for dependency management and packaging, [black](https://black.readthedocs.io/en/stable/) for code formatting, [flake8](https://flake8.pycqa.org/en/latest/) for linting, and [mypy](https://mypy.readthedocs.io/en/stable/) for type checking. ## License This project is licenced under a MIT license.


نیازمندی

مقدار نام
>=1.2.2,<2.0.0 Penman
>=3.7.4 typing-extensions


زبان مورد نیاز

مقدار نام
>=3.7,<4.0 Python


نحوه نصب


نصب پکیج whl amr-logic-converter-0.9.0:

    pip install amr-logic-converter-0.9.0.whl


نصب پکیج tar.gz amr-logic-converter-0.9.0:

    pip install amr-logic-converter-0.9.0.tar.gz