معرفی شرکت ها


amor-hyp-gp-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Task-Agnostic Amortized Inference of Gaussian Process Hyperparameters (AHGP)
ویژگی مقدار
سیستم عامل -
نام فایل amor-hyp-gp-0.1.1
نام amor-hyp-gp
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Sulin Liu
ایمیل نویسنده sulinl@princeton.edu
آدرس صفحه اصلی https://github.com/PrincetonLIPS/AHGP
آدرس اینترنتی https://pypi.org/project/amor-hyp-gp/
مجوز MIT
# Task-Agnostic Amortized Inference of Gaussian Process Hyperparameters (AHGP) This repository contains code and pretrained-models for the task-agnostic amortized inference of GP hyperparameters (AHGP) proposed in our [NeurIPS 2020 paper](https://papers.nips.cc/paper/2020/hash/f52db9f7c0ae7017ee41f63c2a7353bc-Abstract.html). AHGP is a method that allows light-weight amortized inference of GP hyperparameters through a pre-trained neural model. The repository also includes a pip installable package that includes the essential components for using AHGP for GP hyperparameters inference. The hope is to make it easier for you to use AHGP with a simple function call. If you find this repository helpful, please cite our [NeurIPS paper](https://papers.nips.cc/paper/2020/hash/f52db9f7c0ae7017ee41f63c2a7353bc-Abstract.html): ``` @incollection{liu2020ahgp, title={Task-Agnostic Amortized Inference of Gaussian Process Hyperparameters}, author={Liu, Sulin and Sun, Xingyuan and Ramadge, Peter J. and Adams, Ryan P.}, booktitle={Advances in Neural Information Processing Systems}, year={2020} } ``` ## Package installation and usage ### Installation The essential components of AHGP are packaged in `model/` and you can install this via PyPI: ```bash pip install amor-hyp-gp ``` ### Requirement `amor-hyp-gp` has the following dependencies: * `python >= 3.6` * `pytorch >= 1.3.0` * `tensorboardX` * `easydict` * `PyYAML` ### Usage Usage examples are included in `examples/`. `ahgp_gp_inference_example.py` contains an example of full GP inference, which uses amortized GP hyperparameter inference and full GP prediction implemented in `PyTorch`. `ahgp_gp_inference_example.py` contains an example that outputs the GP hyperprameters (means and variances of the Gaussian mixtures for modeling the spectral density). ## Code for training and running the models ### Generating synthetic data for training An example of generating synthetic training data from GP priors with stationary kernels is provided in `get_data_gp.py`. ### Running experiments described in the AHGP paper To run the experiments, you will need the following extra dependencies: * `GPy` * `emukit` The UCI regression benchmark datasets are stored in `data/regression_datasets`. The Bayesian optimization functions are implemented in `utils/bo_function.py`. The Bayesian quadrature functions are imported from the `emukit` package. **Training model** To train a neural model for amortized inference, you can run: ```bash python run_exp.py -c config/train.yaml ``` In `config/train.yaml`, you can define the configurations for the neural model and training hyperparameters. **Regression experiments** To run the experiments on regression benchmarks with the pretrained neural model, run: ```bash python run_exp.py -c config/regression.yaml -t ``` In `config/regression.yaml`, you can define the configurations of the pretrained model and the regression experiment. **Bayesian optimization experiments** To run the Bayesian optimization experiments with the pretrained neural model, run: ```bash python run_exp_bo.py -c config/bo.yaml ``` In `config/bo.yaml`, you can define the configurations of the pretrained model and the BO experiment. **Bayesian quadrature experiments** To run the Bayesian quadrature experiments with the pretrained neural model, run: ```bash python run_exp_bq.py -c config/bq.yaml ``` In `config/bq.yaml`, you can define the configurations of the pretrained model and the BQ experiment. ## Authors: * [Sulin Liu](https://liusulin.github.io/) * [Xingyuan Sun](http://people.csail.mit.edu/xingyuan/) * [Peter J. Ramadge](https://ee.princeton.edu/people/peter-j-ramadge) * [Ryan P. Adams](https://www.cs.princeton.edu/~rpa/) Please reach out to us with any questions!


نحوه نصب


نصب پکیج whl amor-hyp-gp-0.1.1:

    pip install amor-hyp-gp-0.1.1.whl


نصب پکیج tar.gz amor-hyp-gp-0.1.1:

    pip install amor-hyp-gp-0.1.1.tar.gz