معرفی شرکت ها


amid-0.8.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A curated list of medical imaging datasets with unified interfaces
ویژگی مقدار
سیستم عامل -
نام فایل amid-0.8.0
نام amid
نسخه کتابخانه 0.8.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/neuro-ml/amid
آدرس اینترنتی https://pypi.org/project/amid/
مجوز -
[![docs](https://img.shields.io/badge/-docs-success)](https://neuro-ml.github.io/amid/) [![contribute](https://img.shields.io/badge/-contribute-success)](https://neuro-ml.github.io/amid/latest/CONTRIBUTING/) [![pypi](https://img.shields.io/pypi/v/amid?logo=pypi&label=PyPi)](https://pypi.org/project/amid/) ![License](https://img.shields.io/github/license/neuro-ml/amid) Awesome Medical Imaging Datasets (AMID) - a curated list of medical imaging datasets with unified interfaces # Getting started Just import a dataset and start using it! Note that for some datasets you must manually download the raw files first. ```python from amid.verse import VerSe ds = VerSe() # get the available ids print(len(ds.ids)) i = ds.ids[0] # use the available methods: # load the image and vertebrae masks x, y = ds.image(i), ds.masks(i) print(ds.split(i), ds.patient(i)) # or get a namedTuple-like object: entry = ds(i) x, y = entry.image, entry.masks print(entry.split, entry.patient) ``` # Available datasets | Name | Entries | Body region | Modality | |:---------------------------------------------------------------------------------------------------------------------------------------------|----------:|:------------------------------------|:--------------------------------| | <a href="https://zenodo.org/record/7262581">AMOS</a> | 600 | Abdomen | CT, MRI | | <a href="https://ieee-dataport.org/open-access/bimcv-covid-19-large-annotated-dataset-rx-and-ct-images-covid-19-patients-0">BIMCVCovid19</a> | 16335 | Chest | CT | | <a href="https://sites.google.com/view/calgary-campinas-dataset/home">CC359</a> | 359 | Head | MRI T1 | | <a href="https://physionet.org/content/ct-ich/1.3.1/">CT_ICH</a> | 75 | Head | CT | | <a href="https://zenodo.org/record/6504722#.YsgwnNJByV4">CrossMoDA</a> | 484 | Head | MRI T1c, MRI T2hr | | <a href="https://xnat.bmia.nl/data/archive/projects/egd">EGD</a> | 3096 | Head | FLAIR, MRI T1, MRI T1GD, MRI T2 | | <a href="https://flare22.grand-challenge.org/">FLARE2022</a> | 2100 | Abdomen | CT | | <a href="https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966254">LIDC</a> | 1018 | Chest | CT | | <a href="https://competitions.codalab.org/competitions/17094">LiTS</a> | 201 | Abdominal | CT | | <a href="https://www.medseg.ai/database/liver-segments-50-cases">LiverMedseg</a> | 50 | Chest, Abdomen | CT | | <a href="https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=80969742">MIDRC</a> | 155 | Thorax | CT | | <a href="http://medicalood.dkfz.de/web/">MOOD</a> | 1358 | Head, Abdominal | MRI, CT | | <a href="http://medicalsegmentation.com/covid19/">Medseg9</a> | 9 | Chest | CT | | <a href="https://mosmed.ai/en/datasets/mosmeddata-kt-s-priznakami-raka-legkogo-tip-viii/">MoscowCancer500</a> | 979 | Thorax | CT | | <a href="https://mosmed.ai/en/datasets/covid191110/">MoscowCovid1110</a> | 1110 | Thorax | CT | | <a href="https://wiki.cancerimagingarchive.net/display/NLST/National+Lung+Screening+Trial">NLST</a> | 13623 | Thorax | CT | | <a href="https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics">NSCLC</a> | 422 | Thorax | CT | | <a href="https://www.kaggle.com/competitions/rsna-breast-cancer-detection/data">RSNABreastCancer</a> | 54710 | Thorax | MG | | <a href="https://stanfordaimi.azurewebsites.net/datasets/e8ca74dc-8dd4-4340-815a-60b41f6cb2aa">StanfordCoCa</a> | 971 | Coronary, Chest | CT | | <a href="https://zenodo.org/record/6802614#.Y6M2MxXP1D8">Totalsegmentator</a> | 1204 | Head, Thorax, Abdomen, Pelvis, Legs | CT | | <a href="https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70229053">VSSEG</a> | 484 | Head | MRI T1c, MRI T2 | | <a href="https://osf.io/4skx2/">VerSe</a> | 374 | Thorax, Abdomen | CT | Check out [our docs](https://neuro-ml.github.io/amid/) for a more detailed list of available datasets and their fields. # Install Just get it from PyPi: ```shell pip install amid ``` Or if you want to use version control features: ```shell git clone https://github.com/neuro-ml/amid.git cd amid && pip install -e . ``` # Contribute Check our [contribution guide](https://neuro-ml.github.io/amid/latest/CONTRIBUTING/) if you want to add a new dataset to AMID.


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl amid-0.8.0:

    pip install amid-0.8.0.whl


نصب پکیج tar.gz amid-0.8.0:

    pip install amid-0.8.0.tar.gz