معرفی شرکت ها


amici-0.9.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Advanced multi-language Interface to CVODES and IDAS
ویژگی مقدار
سیستم عامل -
نام فایل amici-0.9.5
نام amici
نسخه کتابخانه 0.9.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Fabian Froehlich, Jan Hasenauer, Daniel Weindl and Paul Stapor
ایمیل نویسنده fabian_froehlich@hms.harvard.edu
آدرس صفحه اصلی https://github.com/AMICI-dev/AMICI
آدرس اینترنتی https://pypi.org/project/amici/
مجوز BSD 3-Clause License
<img src="https://raw.githubusercontent.com/AMICI-dev/AMICI/master/documentation/gfx/banner.png" height="60" align="left" alt="AMICI logo"> ## Advanced Multilanguage Interface for CVODES and IDAS ## About AMICI provides a multi-language (Python, C++, Matlab) interface for the [SUNDIALS](https://computing.llnl.gov/projects/sundials/) solvers [CVODES](https://computing.llnl.gov/projects/sundials/cvodes) (for ordinary differential equations) and [IDAS](https://computing.llnl.gov/projects/sundials/idas) (for algebraic differential equations). AMICI allows the user to read differential equation models specified as [SBML](http://sbml.org/) or [PySB](http://pysb.org/) and automatically compiles such models into Python modules, C++ libraries or Matlab `.mex` simulation files. In contrast to the (no longer maintained) [sundialsTB](https://computing.llnl.gov/projects/sundials/sundials-software) Matlab interface, all necessary functions are transformed into native C++ code, which allows for a significantly faster simulation. Beyond forward integration, the compiled simulation file also allows for forward sensitivity analysis, steady state sensitivity analysis and adjoint sensitivity analysis for likelihood-based output functions. The interface was designed to provide routines for efficient gradient computation in parameter estimation of biochemical reaction models but it is also applicable to a wider range of differential equation constrained optimization problems. ## Current build status <a href="https://badge.fury.io/py/amici"> <img src="https://badge.fury.io/py/amici.svg" alt="PyPI version"></a> <a href="https://github.com/AMICI-dev/AMICI/actions/workflows/test_pypi.yml"> <img src="https://github.com/AMICI-dev/AMICI/actions/workflows/test_pypi.yml/badge.svg" alt="PyPI installation"></a> <a href="https://codecov.io/gh/AMICI-dev/AMICI"> <img src="https://codecov.io/gh/AMICI-dev/AMICI/branch/master/graph/badge.svg" alt="Code coverage"></a> <a href="https://sonarcloud.io/dashboard?id=ICB-DCM_AMICI&branch=master"> <img src="https://sonarcloud.io/api/project_badges/measure?branch=master&project=ICB-DCM_AMICI&metric=sqale_index" alt="SonarCloud technical debt"></a> <a href="https://zenodo.org/badge/latestdoi/43677177"> <img src="https://zenodo.org/badge/43677177.svg" alt="Zenodo DOI"></a> <a href="https://amici.readthedocs.io/en/latest/?badge=latest"> <img src="https://readthedocs.org/projects/amici/badge/?version=latest" alt="ReadTheDocs status"></a> <a href="https://bestpractices.coreinfrastructure.org/projects/3780"> <img src="https://bestpractices.coreinfrastructure.org/projects/3780/badge" alt="coreinfrastructure bestpractices badge"></a> ## Features * SBML import * PySB import * Generation of C++ code for model simulation and sensitivity computation * Access to and high customizability of CVODES and IDAS solver * Python, C++, Matlab interface * Sensitivity analysis * forward * steady state * adjoint * first- and second-order * Pre-equilibration and pre-simulation conditions * Support for [discrete events and logical operations](https://academic.oup.com/bioinformatics/article/33/7/1049/2769435) (Matlab-only) ## Interfaces & workflow The AMICI workflow starts with importing a model from either [SBML](http://sbml.org/) (Matlab, Python), [PySB](http://pysb.org/) (Python), or a Matlab definition of the model (Matlab-only). From this input, all equations for model simulation are derived symbolically and C++ code is generated. This code is then compiled into a C++ library, a Python module, or a Matlab `.mex` file and is then used for model simulation. ![AMICI workflow](https://raw.githubusercontent.com/AMICI-dev/AMICI/master/documentation/gfx/amici_workflow.png) ## Getting started The AMICI source code is available at https://github.com/AMICI-dev/AMICI/. To install AMICI, first read the installation instructions for [Python](https://amici.readthedocs.io/en/latest/python_installation.html), [C++](https://amici.readthedocs.io/en/develop/cpp_installation.html) or [Matlab](https://amici.readthedocs.io/en/develop/matlab_installation.html). To get you started with Python-AMICI, the best way might be checking out this [Jupyter notebook](https://github.com/AMICI-dev/AMICI/blob/master/documentation/GettingStarted.ipynb) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/AMICI-dev/AMICI/develop?labpath=documentation%2FGettingStarted.ipynb). To get started with Matlab-AMICI, various examples are available in [matlab/examples/](https://github.com/AMICI-dev/AMICI/tree/master/matlab/examples). Comprehensive documentation is available at [https://amici.readthedocs.io/en/latest/](https://amici.readthedocs.io/en/latest/). Any [contributions](https://amici.readthedocs.io/en/develop/CONTRIBUTING.html) to AMICI are welcome (code, bug reports, suggestions for improvements, ...). ## Getting help In case of questions or problems with using AMICI, feel free to post an [issue](https://github.com/AMICI-dev/AMICI/issues) on GitHub. We are trying to get back to you quickly. ## Projects using AMICI There are several tools for parameter estimation offering good integration with AMICI: * [pyPESTO](https://github.com/ICB-DCM/pyPESTO): Python library for optimization, sampling and uncertainty analysis * [pyABC](https://github.com/ICB-DCM/pyABC): Python library for parallel and scalable ABC-SMC (Approximate Bayesian Computation - Sequential Monte Carlo) * [parPE](https://github.com/ICB-DCM/parPE): C++ library for parameter estimation of ODE models offering distributed memory parallelism with focus on problems with many simulation conditions. ## Publications **Citeable DOI for the latest AMICI release:** [![DOI](https://zenodo.org/badge/43677177.svg)](https://zenodo.org/badge/latestdoi/43677177) There is a list of [publications using AMICI](https://amici.readthedocs.io/en/latest/references.html). If you used AMICI in your work, we are happy to include your project, please let us know via a Github issue. When using AMICI in your project, please cite * Fröhlich, F., Weindl, D., Schälte, Y., Pathirana, D., Paszkowski, Ł., Lines, G.T., Stapor, P. and Hasenauer, J., 2021. AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models. Bioinformatics, btab227, [DOI:10.1093/bioinformatics/btab227](https://doi.org/10.1093/bioinformatics/btab227). ``` @article{frohlich2020amici, title={AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models}, author={Fr{\"o}hlich, Fabian and Weindl, Daniel and Sch{\"a}lte, Yannik and Pathirana, Dilan and Paszkowski, {\L}ukasz and Lines, Glenn Terje and Stapor, Paul and Hasenauer, Jan}, journal = {Bioinformatics}, year = {2021}, month = {04}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btab227}, note = {btab227}, eprint = {https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btab227/36866220/btab227.pdf}, } ``` When presenting work that employs AMICI, feel free to use one of the icons in [documentation/gfx/](https://github.com/AMICI-dev/AMICI/tree/master/documentation/gfx), which are available under a [CC0](https://github.com/AMICI-dev/AMICI/tree/master/documentation/gfx/LICENSE.md) license: <p align="center"> <img src="https://raw.githubusercontent.com/AMICI-dev/AMICI/master/documentation/gfx/logo_text.png" height="75" alt="AMICI Logo"> </p>


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl amici-0.9.5:

    pip install amici-0.9.5.whl


نصب پکیج tar.gz amici-0.9.5:

    pip install amici-0.9.5.tar.gz