معرفی شرکت ها


amical-1.6.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل amical-1.6.0
نام amical
نسخه کتابخانه 1.6.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Anthony Soulain <anthony.soulain@univ-grenoble-alpes.fr>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/amical/
مجوز MIT
<a href="https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL"> <img src="https://raw.githubusercontent.com/SydneyAstrophotonicInstrumentationLab/AMICAL/master/doc/Figures/amical_logo.png" width="300"></a> (**A**perture **M**asking **I**nterferometry **C**alibration and **A**nalysis **L**ibrary) [![PyPI](https://img.shields.io/pypi/v/amical.svg?logo=pypi&logoColor=white&label=PyPI)](https://pypi.org/project/amical/) [![PyPI](https://img.shields.io/badge/requires-Python%20≥%203.8-blue?logo=python&logoColor=white)](https://pypi.org/project/amical/) ![Licence](https://img.shields.io/github/license/SydneyAstrophotonicInstrumentationLab/AMICAL) ![CI](https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL/actions/workflows/ci.yml/badge.svg) [![CI (bleeding edge)](https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL/actions/workflows/bleeding-edge.yaml/badge.svg)](https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL/actions/workflows/bleeding-edge.yaml) [![pre-commit.ci status](https://results.pre-commit.ci/badge/github/SydneyAstrophotonicInstrumentationLab/AMICAL/master.svg)](https://results.pre-commit.ci/latest/github/SydneyAstrophotonicInstrumentationLab/AMICAL/master) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/charliermarsh/ruff/main/assets/badge/v1.json)](https://github.com/charliermarsh/ruff) ## Installation ```shell $ python3 -m pip install amical ``` ## What can AMICAL do for you ? AMICAL is developed to provide an easy-to-use solution to process **A**perture **M**asking **I**nterferometry (AMI) data from major existing facilities: [NIRISS](https://jwst-docs.stsci.edu/near-infrared-imager-and-slitless-spectrograph) on the JWST (first scientific interferometer operating in space), [SPHERE](https://www.eso.org/sci/facilities/paranal/instruments/sphere.html) and [VISIR](https://www.eso.org/sci/facilities/paranal/instruments/visir.html) from the European Very Large Telescope (VLT) and [VAMPIRES](https://www.naoj.org/Projects/SCEXAO/scexaoWEB/030openuse.web/040vampires.web/indexm.html) from SUBARU telescope (and more to come). We focused our efforts to propose a user-friendly interface, though different sub-classes allowing to (1) **Clean** the reduced datacube from the standard instrument pipelines, (2) **Extract** the interferometrical quantities (visibilities and closure phases) using a Fourier sampling approach and (3) **Calibrate** those quantities to remove the instrumental biases. In addition (4), we include two external packages called [CANDID](https://github.com/amerand/CANDID) and [Pymask](https://github.com/AnthonyCheetham/pymask) to **analyse** the final outputs obtained from a binary-like sources (star-star or star-planet). We interfaced these stand-alone packages with AMICAL to quickly estimate our scientific results (e.g., separation, position angle, contrast ratio, contrast limits, etc.) using different approaches (chi2 grid, MCMC, see [example_analysis.py](https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL/blob/master/doc/example_analysis.py) for details). ## Getting started Looking for a quickstart into AMICAL? You can go through our **[tutorial](https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL/blob/master/doc/tutorial.md)** explaining how to use its different features. You can also have a look to the example scripts made for [NIRISS](https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL/blob/master/doc/example_NIRISS.py) and [SPHERE](https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL/blob/master/doc/example_NIRISS.py) or get details about the CANDID/Pymask uses with [example_analysis.py](https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL/blob/master/doc/example_analysis.py). ⚡ Last updates (08/2022) : New example script for IFS-SPHERE data is now available [here](https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL/blob/master/doc/example_IFS.py). ## Use policy and reference publication If you use AMICAL in a publication, we encourage you to properly cite the reference paper published during the 2020 SPIE conference: [The James Webb Space Telescope aperture masking interferometer](https://ui.adsabs.harvard.edu/abs/2020SPIE11446E..11S/abstract). The library explanation is part of a broader description of the interferometric mode of NIRISS, so feel free to have a look at the exciting possibilities of AMI! ## Acknowledgements This work is mainly a modern Python translation of the very well known (and old) IDL pipeline used to process and analyze Sparse Aperture Masking data. This pipeline, called "Sydney code", was developed by a lot of people over many years. Credit goes to the major developers, including Peter Tuthill, Mike Ireland and John Monnier. Many forks exist across the web and the last IDL version can be found [here](https://github.com/AnthonyCheetham/idl_masking).


نیازمندی

مقدار نام
>=5.0 astropy
- astroquery
- corner
- emcee
- h5py
- matplotlib
- numpy
>=3.2.0 pypdf
- scipy
- tabulate
- termcolor
- tqdm
- uncertainties
>=1.3 importlib-resources


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl amical-1.6.0:

    pip install amical-1.6.0.whl


نصب پکیج tar.gz amical-1.6.0:

    pip install amical-1.6.0.tar.gz