معرفی شرکت ها


amazon-textract-textractor-1.0.24


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package to use AWS Textract services.
ویژگی مقدار
سیستم عامل -
نام فایل amazon-textract-textractor-1.0.24
نام amazon-textract-textractor
نسخه کتابخانه 1.0.24
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/aws-samples/amazon-textract-textractor
آدرس اینترنتی https://pypi.org/project/amazon-textract-textractor/
مجوز Apache 2.0
![Textractor](https://raw.githubusercontent.com/aws-samples/amazon-textract-textractor/5716c52e8a39c063f43e058e1637e4984a4b2da4/docs/source/textractor_cropped.png) [![Tests](https://github.com/aws-samples/amazon-textract-textractor/actions/workflows/tests.yml/badge.svg)](https://github.com/aws-samples/amazon-textract-textractor/actions/workflows/tests.yml) [![Documentation](https://github.com/aws-samples/amazon-textract-textractor/actions/workflows/documentation.yml/badge.svg)](https://aws-samples.github.io/amazon-textract-textractor/) [![PyPI version](https://badge.fury.io/py/amazon-textract-textractor.svg)](https://pypi.org/project/amazon-textract-textractor/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) **Textractor** is a python package created to seamlessly work with [Amazon Textract](https://docs.aws.amazon.com/textract/latest/dg/what-is.html) a document intelligence service offering text recognition, table extraction, form processing, and much more. Whether you are making a one-off script or a complex distributed document processing pipeline, Textractor makes it easy to use Textract. If you are looking for the other amazon-textract-* packages, you can find them using the links below: - [amazon-textract-caller](https://github.com/aws-samples/amazon-textract-textractor/tree/master/caller) (to simplify calling Amazon Textract without additional dependencies) - [amazon-textract-response-parser](https://pypi.org/project/amazon-textract-response-parser/) (to parse the JSON response returned by Textract APIs) - [amazon-textract-overlayer](https://github.com/aws-samples/amazon-textract-textractor/tree/master/overlayer) (to draw bounding boxes around the document entities on the document image) - [amazon-textract-prettyprinter](https://github.com/aws-samples/amazon-textract-textractor/tree/master/prettyprinter) (convert Amazon Textract response to CSV, text, markdown, ...) - [amazon-textract-geofinder](https://github.com/aws-samples/amazon-textract-textractor/tree/master/tpipelinegeofinder) (extract specific information from document with methods that help navigate the document using geometry and relations, e. g. hierarchical key/value pairs) ## Installation Textractor is available on PyPI and can be installed with `pip install amazon-textract-textractor`. By default this will install the minimal version of Textractor which is suitable for lambda execution. The following extras can be used to add features: - `pandas` (`pip install "amazon-textract-textractor[pandas]"`) installs pandas which is used to enable DataFrame and CSV exports. - `pdf` (`pip install "amazon-textract-textractor[pdf]"`) includes `pdf2image` and enables PDF rasterization in Textractor. Note that this is **not** necessary to call Textract with a PDF file. - `torch` (`pip install "amazon-textract-textractor[torch]"`) includes `sentence_transformers` for better word search and matching. This will work on CPU but be noticeably slower than non-machine learning based approaches. - `dev` (`pip install "amazon-textract-textractor[dev]"`) includes all the dependencies above and everything else needed to test the code. You can pick several extras by separating the labels with commas like this `pip install "amazon-textract-textractor[pdf,torch]"`. ## Documentation Generated documentation for the latest released version can be accessed here: [aws-samples.github.io/amazon-textract-textractor/](https://aws-samples.github.io/amazon-textract-textractor/) ## Examples While a collection of simplistic examples is presented here, the documentation has a much [larger collection of examples](https://aws-samples.github.io/amazon-textract-textractor/examples.html) with specific case studies that will help you get started. ### Setup These two lines are all you need to use Textract. The Textractor instance can be reused across multiple requests for both synchronous and asynchronous requests. ```py from textractor import Textractor extractor = Textractor(profile_name="default") ``` ### Text recognition ```py # file_source can be an image, list of images, bytes or S3 path document = extractor.detect_document_text(file_source="tests/fixtures/single-page-1.png") print(document.lines) #[Textractor Test, Document, Page (1), Key - Values, Name of package: Textractor, Date : 08/14/2022, Table 1, Cell 1, Cell 2, Cell 4, Cell 5, Cell 6, Cell 7, Cell 8, Cell 9, Cell 10, Cell 11, Cell 12, Cell 13, Cell 14, Cell 15, Selection Element, Selected Checkbox, Un-Selected Checkbox] ``` ### Table extraction ```py from textractor.data.constants import TextractFeatures document = extractor.analyze_document( file_source="tests/fixtures/form.png", features=[TextractFeatures.TABLES] ) # Saves the table in an excel document for further processing document.tables[0].to_excel("output.xlsx") ``` ### Form extraction ```py from textractor.data.constants import TextractFeatures document = extractor.analyze_document( file_source="tests/fixtures/form.png", features=[TextractFeatures.FORMS] ) # Use document.get() to search for a key with fuzzy matching document.get("email") # [E-mail Address : johndoe@gmail.com] ``` ### Analyze ID ```py document = extractor.analyze_id(file_source="tests/fixtures/fake_id.png") print(document.identity_documents[0].get("FIRST_NAME")) # 'MARIA' ``` ### Receipt processing (Analyze Expense) ```py document = extractor.analyze_expense(file_source="tests/fixtures/receipt.jpg") print(document.expense_documents[0].get("TOTAL").text) # '$1810.46' ``` If your use case was not covered here or if you are looking for asynchronous usage examples, see [our collection of examples](https://aws-samples.github.io/amazon-textract-textractor/examples.html). ## CLI Textractor also comes with the `textractor` script, which supports calling, printing and overlaying directly in the terminal. `textractor analyze-document tests/fixtures/amzn_q2.png output.json --features TABLES --overlay TABLES` ![overlay_example](images/amzn.png) See [the documentation](https://aws-samples.github.io/amazon-textract-textractor/commandline.html) for more examples. ## Tests The package comes with tests that call the production Textract APIs. Running the tests will incur charges to your AWS account. ## Acknowledgements This library was made possible by the work of Srividhya Radhakrishna ([@srividh-r](https://github.com/srividh-r)). ## Contributing See [CONTRIBUTING.md](CONTRIBUTING.md) ## License This library is licensed under the Apache 2.0 License. <sub><sup>Excavator image by macrovector on Freepik</sub></sup>


نیازمندی

مقدار نام
- Pillow
==3.0.* XlsxWriter
==0.0.27 amazon-textract-caller
==0.1.37 amazon-textract-response-parser
==0.6.2 editdistance
- jsonschema
==0.8.* tabulate
- jsonschema
- jupyterlab
==1.21.* numpy
- pandas
==1.16.* pdf2image
- pytest
==2.2.* sentence-transformers
==1.0.* sphinx-rtd-theme
==5.1.* Sphinx
- jsonschema
- jupyterlab
==0.8.* nbsphinx
==1.21.* numpy
- pandas
==1.16.0 pdf2image
- pytest
- sphinx-argparse
==1.0.* sphinx-rtd-theme
==1.0.* sphinxcontrib-applehelp
==1.0.* sphinxcontrib-devhelp
==2.0.* sphinxcontrib-htmlhelp
==1.0.* sphinxcontrib-jsmath
==1.0.* sphinxcontrib-qthelp
==1.1.* sphinxcontrib-serializinghtml
==1.21.* numpy
- pandas
==1.16.* pdf2image
==2.2.* sentence-transformers


نحوه نصب


نصب پکیج whl amazon-textract-textractor-1.0.24:

    pip install amazon-textract-textractor-1.0.24.whl


نصب پکیج tar.gz amazon-textract-textractor-1.0.24:

    pip install amazon-textract-textractor-1.0.24.tar.gz