معرفی شرکت ها


alphalens-reloaded-0.4.2rc1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Performance analysis of predictive (alpha) stock factors
ویژگی مقدار
سیستم عامل OS Independent
نام فایل alphalens-reloaded-0.4.2rc1
نام alphalens-reloaded
نسخه کتابخانه 0.4.2rc1
نگهدارنده ['Applied AI, LLC']
ایمیل نگهدارنده []
نویسنده Quantopian Inc
ایمیل نویسنده -
آدرس صفحه اصلی https://alphalens.ml4trading.io
آدرس اینترنتی https://pypi.org/project/alphalens-reloaded/
مجوز Apache 2.0
<p align="center"> <a href="https://alphalens.ml4trading.io"> <img src="https://i.imgur.com/uf8PmQO.png" width="35%"> </a> </p> ![PyPI](https://img.shields.io/pypi/v/alphalens-reloaded) [![Anaconda](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/conda_package.yml/badge.svg)](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/conda_package.yml) [![Tests](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/unit_tests.yml/badge.svg)](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/unit_tests.yml) [![PyPI](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/build_wheels.yml/badge.svg)](https://github.com/stefan-jansen/alphalens-reloaded/actions/workflows/build_wheels.yml) [![Coverage Status](https://coveralls.io/repos/github/stefan-jansen/alphalens-reloaded/badge.svg?branch=main)](https://coveralls.io/github/stefan-jansen/alphalens-reloaded?branch=main) ![GitHub issues](https://img.shields.io/github/issues/stefan-jansen/alphalens-reloaded) ![PyPI - License](https://img.shields.io/pypi/l/alphalens-reloaded) ![Discourse users](https://img.shields.io/discourse/users?server=https%3A%2F%2Fexchange.ml4trading.io%2F) ![Twitter Follow](https://img.shields.io/twitter/follow/ml4trading?style=social) Alphalens is a Python library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the [Zipline](https://www.zipline.ml4trading.io/) open source backtesting library, and [Pyfolio](https://github.com/quantopian/pyfolio) which provides performance and risk analysis of financial portfolios. The main function of Alphalens is to surface the most relevant statistics and plots about an alpha factor, including: - Returns Analysis - Information Coefficient Analysis - Turnover Analysis - Grouped Analysis # Getting started With a signal and pricing data creating a factor \"tear sheet\" is a two step process: ```python import alphalens # Ingest and format data factor_data = alphalens.utils.get_clean_factor_and_forward_returns(my_factor, pricing, quantiles=5, groupby=ticker_sector, groupby_labels=sector_names) # Run analysis alphalens.tears.create_full_tear_sheet(factor_data) ``` # Learn more Check out the [example notebooks](https://github.com/stefan-jansen/alphalens-reloaded/tree/master/alphalens/examples) for more on how to read and use the factor tear sheet. # Installation Install with pip: pip install alphalens-reloaded Install with conda: conda install -c ml4t alphalens-reloaded Install from the master branch of Alphalens repository (development code): pip install git+https://github.com/stefan-jansen/alphalens-reloaded Alphalens depends on: - [matplotlib](https://github.com/matplotlib/matplotlib) - [numpy](https://github.com/numpy/numpy) - [pandas](https://github.com/pandas-dev/pandas) - [scipy](https://github.com/scipy/scipy) - [seaborn](https://github.com/mwaskom/seaborn) - [statsmodels](https://github.com/statsmodels/statsmodels) # Usage A good way to get started is to run the examples in a [Jupyter notebook](https://jupyter.org/). To get set up with an example, you can: Run a Jupyter notebook server via: ```bash jupyter notebook ``` From the notebook list page(usually found at `http://localhost:8888/`), navigate over to the examples directory, and open any file with a .ipynb extension. Execute the code in a notebook cell by clicking on it and hitting Shift+Enter. # Questions? If you find a bug, feel free to open an issue on our [github tracker](https://github.com/stefan-jansen/alphalens-reloaded/issues). # Contribute If you want to contribute, a great place to start would be the [help-wanted issues](https://github.com/stefan-jansen/alphalens-reloaded/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22). # Credits - [Andrew Campbell](https://github.com/a-campbell) - [James Christopher](https://github.com/jameschristopher) - [Thomas Wiecki](https://github.com/twiecki) - [Jonathan Larkin](https://github.com/marketneutral) - Jessica Stauth (<jstauth@quantopian.com>) - [Taso Petridis](https://github.com/tasopetridis) For a full list of contributors see the [contributors page.](https://github.com/stefan-jansen/alphalens-reloaded/graphs/contributors) # Example Tear Sheets Example factor courtesy of [ExtractAlpha](https://extractalpha.com/) ## Peformance Metrics Tables ![image](https://i.imgur.com/4T8cziG.png) ## Returns Tear Sheet ![image](https://i.imgur.com/aVs3KiM.png) ## Information Coefficient Tear Sheet ![image](https://i.imgur.com/vAm8okb.png) ## Sector Tear Sheet ![image](https://i.imgur.com/pnBs0ta.png)


نیازمندی

مقدار نام
>=1.4.0 matplotlib
>=1.9.1 numpy
>=1.0.0 pandas
>=0.14.0 scipy
>=0.6.0 seaborn
>=0.6.1 statsmodels
>=3.2.3 IPython
>=0.5.7 empyrical-reloaded
- Cython
>=1.3.2 Sphinx
>=0.5.0 numpydoc
>=0.6.0 sphinx-autobuild
- pydata-sphinx-theme
- sphinx-markdown-tables
- sphinx-copybutton
- m2r2
>=3.9.1 flake8
- black
>=2.12.1 pre-commit
>=2.3.1 tox
>=4.0.3 coverage
==3.0.1 coveralls
>=6.2 pytest
>=2.12 pytest-cov
>=0.6.1 parameterized
>=3.9.1 flake8
- black
>=2.12.1 pre-commit
- Cython
>=1.3.2 Sphinx
>=0.5.0 numpydoc
>=0.6.0 sphinx-autobuild
- pydata-sphinx-theme
- sphinx-markdown-tables
- sphinx-copybutton
- m2r2
>=2.3.1 tox
>=4.0.3 coverage
==3.0.1 coveralls
>=6.2 pytest
>=2.12 pytest-cov
>=0.6.1 parameterized
>=3.9.1 flake8
- black


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl alphalens-reloaded-0.4.2rc1:

    pip install alphalens-reloaded-0.4.2rc1.whl


نصب پکیج tar.gz alphalens-reloaded-0.4.2rc1:

    pip install alphalens-reloaded-0.4.2rc1.tar.gz