معرفی شرکت ها


alphacsc-0.4.0rc7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Convolutional dictionary learning for noisy signals.
ویژگی مقدار
سیستم عامل -
نام فایل alphacsc-0.4.0rc7
نام alphacsc
نسخه کتابخانه 0.4.0rc7
نگهدارنده ['Thomas Moreau']
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده thomas.moreau@inria.fr
آدرس صفحه اصلی https://github.com/alphacsc/alphacsc.git
آدرس اینترنتی https://pypi.org/project/alphacsc/
مجوز BSD (3-clause)
=================================================== alphaCSC: Convolution sparse coding for time-series =================================================== |Build Status| |codecov| This is a library to perform shift-invariant `sparse dictionary learning <https://en.wikipedia.org/wiki/Sparse_dictionary_learning>`_, also known as convolutional sparse coding (CSC), on time-series data. It includes a number of different models: 1. univariate CSC 2. multivariate CSC 3. multivariate CSC with a rank-1 constraint [1]_ 4. univariate CSC with an alpha-stable distribution [2]_ A mathematical descriptions of these models is available `in the documentation <https://alphacsc.github.io/models.html>`_. Installation ============ To install this package, the easiest way is using ``pip``. It will install this package and its dependencies. The ``setup.py`` depends on ``numpy`` and ``cython`` for the installation so it is advised to install them beforehand. To install this package, please run one of the two commands: (Latest stable version) .. code:: pip install alphacsc (Development version) .. code:: pip install git+https://github.com/alphacsc/alphacsc.git#egg=alphacsc (Dicodile backend) .. code:: pip install numpy cython pip install alphacsc[dicodile] To use dicodile backend, do not forget to set ``MPI_HOSTFILE`` environment variable. If you do not have admin privileges on the computer, use the ``--user`` flag with ``pip``. To upgrade, use the ``--upgrade`` flag provided by ``pip``. To check if everything worked fine, you can run: .. code:: python -c 'import alphacsc' and it should not give any error messages. Quickstart ========== Here is an example to present briefly the API: .. code:: python import numpy as np import matplotlib.pyplot as plt from alphacsc import BatchCDL # Define the different dimensions of the problem n_atoms = 10 n_times_atom = 50 n_channels = 5 n_trials = 10 n_times = 1000 # Generate a random set of signals X = np.random.randn(n_trials, n_channels, n_times) # Learn a dictionary with batch algorithm and rank1 constraints. cdl = BatchCDL(n_atoms, n_times_atom, rank1=True) cdl.fit(X) # Display the learned atoms fig, axes = plt.subplots(n_atoms, 2, num="Dictionary") for k in range(n_atoms): axes[k, 0].plot(cdl.u_hat_[k]) axes[k, 1].plot(cdl.v_hat_[k]) axes[0, 0].set_title("Spatial map") axes[0, 1].set_title("Temporal map") for ax in axes.ravel(): ax.set_xticklabels([]) ax.set_yticklabels([]) plt.show() Dicodile backend ================ AlphaCSC can use a `dicodile <https://github.com/tomMoral/dicodile>`_-based backend to perform sparse encoding in parallel. To install dicodile, run ``pip install alphacsc[dicodile]``. Known OpenMPI issues -------------------- When self-installing OpenMPI (for instance to run `dicodile` on a single machine, or for continuous integration), running the `dicodile` solver might end up causing a deadlock (no output for a long time). It is often due to communication issue between the workers. This issue can often be solved by disabling Docker-related virtual NICs, for instance by running ``export OMPI_MCA_btl_tcp_if_exclude="docker0"``. Bug reports =========== Use the `github issue tracker <https://github.com/alphacsc/alphacsc/issues>`_ to report bugs. Cite our work ============= If you use this code in your project, please consider citing our work: .. [1] Dupré La Tour, T., Moreau, T., Jas, M., & Gramfort, A. (2018). `Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals <https://arxiv.org/abs/1805.09654v2>`_. Advances in Neural Information Processing Systems (NIPS). .. [2] Jas, M., Dupré La Tour, T., Şimşekli, U., & Gramfort, A. (2017). `Learning the Morphology of Brain Signals Using Alpha-Stable Convolutional Sparse Coding <https://papers.nips.cc/paper/6710-learning-the-morphology-of-brain-signals-using-alpha-stable-convolutional-sparse-coding.pdf>`_. Advances in Neural Information Processing Systems (NIPS), pages 1099--1108. .. |Build Status| image:: https://github.com/alphacsc/alphacsc/workflows/unittests/badge.svg .. |codecov| image:: https://codecov.io/gh/alphacsc/alphacsc/branch/master/graph/badge.svg :target: https://codecov.io/gh/alphacsc/alphacsc


نیازمندی

مقدار نام
- mne
- numba
- numpy
- scipy
- joblib
- matplotlib
- scikit-learn
- flake8
- dicodile
- pydata-sphinx-theme
- numpydoc
- sphinx-gallery
- pactools
- nibabel
- pytest
- pytest-cov


نحوه نصب


نصب پکیج whl alphacsc-0.4.0rc7:

    pip install alphacsc-0.4.0rc7.whl


نصب پکیج tar.gz alphacsc-0.4.0rc7:

    pip install alphacsc-0.4.0rc7.tar.gz