معرفی شرکت ها


alphabase-1.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An infrastructure Python package of the AlphaX ecosystem
ویژگی مقدار
سیستم عامل -
نام فایل alphabase-1.0.2
نام alphabase
نسخه کتابخانه 1.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mann Labs
ایمیل نویسنده jalew188@gmail.com
آدرس صفحه اصلی https://github.com/MannLabs/alphabase
آدرس اینترنتی https://pypi.org/project/alphabase/
مجوز Apache
# AlphaBase ![Pip installation](https://github.com/MannLabs/alphabase/workflows/Default%20installation%20and%20tests/badge.svg) ![PyPi releases](https://github.com/MannLabs/alphabase/workflows/Publish%20on%20PyPi%20and%20release%20on%20GitHub/badge.svg) [![Documentation Status](https://readthedocs.org/projects/alphabase/badge/?version=latest)](https://alphabase.readthedocs.io/en/latest/?badge=latest) [![PyPI](https://img.shields.io/pypi/v/alphabase)](https://pypi.org/project/alphabase) [![pip downloads](https://img.shields.io/pypi/dm/alphabase?color=blue&label=pip%20downloads)](https://pypi.org/project/alphabase) ![Python](https://img.shields.io/pypi/pyversions/alphabase) AlphaBase provides all basic python functionalities for AlphaPept ecosystem from the [Mann Labs at the Max Planck Institute of Biochemistry](https://www.biochem.mpg.de/mann) and the [University of Copenhagen](https://www.cpr.ku.dk/research/proteomics/mann/). To enable all hyperlinks in this document, please view it at [GitHub](https://github.com/MannLabs/alphabase). For documentation, please see [readthedocs](https://alphabase.readthedocs.io/en/latest). - [**About**](#about) - [**License**](#license) - [**Installation**](#installation) - [**Pip installer**](#pip) - [**Developer installer**](#developer) - [**Usage**](#usage) - [**Troubleshooting**](#troubleshooting) - [**Citations**](#citations) - [**How to contribute**](#how-to-contribute) - [**Changelog**](#changelog) ------------------------------------------------------------------------ ## About The infrastructure package of AlphaX ecosystem for MS proteomics. It was first published with AlphaPeptDeep, see [Citations](#citations). ### Packages built upon AlphaBase - [AlphaPeptDeep](https://github.com/MannLabs/alphapeptdeep): deep learning framework for proteomics. - [AlphaRaw](https://github.com/MannLabs/alpharaw): raw data reader for different vendors. ------------------------------------------------------------------------ ## Citations Wen-Feng Zeng, Xie-Xuan Zhou, Sander Willems, Constantin Ammar, Maria Wahle, Isabell Bludau, Eugenia Voytik, Maximillian T. Strauss & Matthias Mann. AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics. Nat Commun 13, 7238 (2022). https://doi.org/10.1038/s41467-022-34904-3 ------------------------------------------------------------------------ ## License AlphaBase was developed by the [Mann Labs at the Max Planck Institute of Biochemistry](https://www.biochem.mpg.de/mann) and the [University of Copenhagen](https://www.cpr.ku.dk/research/proteomics/mann/) and is freely available with an [Apache License](LICENSE.txt). External Python packages (available in the [requirements](requirements) folder) have their own licenses, which can be consulted on their respective websites. ------------------------------------------------------------------------ ## Installation AlphaBase can be installed and used on all major operating systems (Windows, macOS and Linux). There are two different types of installation possible: - [**Pip installer:**](#pip) Choose this installation if you want to use AlphaBase as a Python package in an existing Python 3.8 environment (e.g. a Jupyter notebook). - [**Developer installer:**](#developer) Choose this installation if you are familiar with [conda](https://docs.conda.io/en/latest/) and Python. This installation allows access to all available features of AlphaBase and even allows to modify its source code directly. Generally, the developer version of AlphaBase outperforms the precompiled versions which makes this the installation of choice for high-throughput experiments. ### Pip AlphaBase can be installed in an existing Python 3.8 environment with a single `bash` command. *This `bash` command can also be run directly from within a Jupyter notebook by prepending it with a `!`*: ``` bash pip install alphabase ``` Installing AlphaBase like this avoids conflicts when integrating it in other tools, as this does not enforce strict versioning of dependancies. However, if new versions of dependancies are released, they are not guaranteed to be fully compatible with AlphaBase. While this should only occur in rare cases where dependencies are not backwards compatible, you can always force AlphaBase to use dependancy versions which are known to be compatible with: ``` bash pip install "alphabase[stable]" ``` NOTE: You might need to run `pip install -U pip` before installing AlphaBase like this. Also note the double quotes `"`. For those who are really adventurous, it is also possible to directly install any branch (e.g. `@development`) with any extras (e.g. `#egg=alphabase[stable,development-stable]`) from GitHub with e.g. ``` bash pip install "git+https://github.com/MannLabs/alphabase.git@development#egg=alphabase[stable,development-stable]" ``` ### Developer AlphaBase can also be installed in editable (i.e. developer) mode with a few `bash` commands. This allows to fully customize the software and even modify the source code to your specific needs. When an editable Python package is installed, its source code is stored in a transparent location of your choice. While optional, it is advised to first (create and) navigate to e.g. a general software folder: ``` bash mkdir ~/folder/where/to/install/software cd ~/folder/where/to/install/software ``` ***The following commands assume you do not perform any additional `cd` commands anymore***. Next, download the AlphaBase repository from GitHub either directly or with a `git` command. This creates a new AlphaBase subfolder in your current directory. ``` bash git clone https://github.com/MannLabs/alphabase.git ``` For any Python package, it is highly recommended to use a separate [conda virtual environment](https://docs.conda.io/en/latest/), as otherwise *dependancy conflicts can occur with already existing packages*. ``` bash conda create --name alphabase python=3.9 -y conda activate alphabase ``` Finally, AlphaBase and all its [dependancies](requirements) need to be installed. To take advantage of all features and allow development (with the `-e` flag), this is best done by also installing the [development dependencies](requirements/requirements_development.txt) instead of only the [core dependencies](requirements/requirements.txt): ``` bash pip install -e "./alphabase[development]" ``` By default this installs loose dependancies (no explicit versioning), although it is also possible to use stable dependencies (e.g. `pip install -e "./alphabase[stable,development-stable]"`). ***By using the editable flag `-e`, all modifications to the [AlphaBase source code folder](alphabase) are directly reflected when running AlphaBase. Note that the AlphaBase folder cannot be moved and/or renamed if an editable version is installed. In case of confusion, you can always retrieve the location of any Python module with e.g. the command `import module` followed by `module.__file__`.*** ------------------------------------------------------------------------ ## Usage TODO ------------------------------------------------------------------------ ## Troubleshooting In case of issues, check out the following: - [Issues](https://github.com/MannLabs/alphabase/issues): Try a few different search terms to find out if a similar problem has been encountered before - [Discussions](https://github.com/MannLabs/alphabase/discussions): Check if your problem or feature requests has been discussed before. ------------------------------------------------------------------------ ## How to contribute If you like this software, you can give us a [star](https://github.com/MannLabs/alphabase/stargazers) to boost our visibility! All direct contributions are also welcome. Feel free to post a new [issue](https://github.com/MannLabs/alphabase/issues) or clone the repository and create a [pull request](https://github.com/MannLabs/alphabase/pulls) with a new branch. For an even more interactive participation, check out the [discussions](https://github.com/MannLabs/alphabase/discussions) and the [the Contributors License Agreement](misc/CLA.md). ------------------------------------------------------------------------ ## Changelog See the [HISTORY.md](HISTORY.md) for a full overview of the changes made in each version.


نیازمندی

مقدار نام
- numba
- numpy
- pyyaml
- pandas
- h5py
- contextlib2
- xxhash
- biopython
- psutil
- tqdm
- scikit-learn
- regex
- pydivsufsort
- pywin32
- jupyter
- twine
- bumpversion
- pipdeptree
- ipykernel
- nbdev
- pyteomics
- scikit-learn
- matplotlib
- autodocsumm
- myst-parser
- sphinx
- nbsphinx
- jinja2
- contextfilter
- furo
- tqdm
- psutil
- biopython
- numba
- numpy
- pyyaml
- pandas
- h5py
- contextlib2
- xxhash
- regex
- pydivsufsort
- pyahocorasick
- jupyter
- twine
- bumpversion
- pipdeptree
- ipykernel
- nbdev
- pyteomics
- scikit-learn
- matplotlib
- autodocsumm
- myst-parser
- sphinx
- nbsphinx
- jinja2
- contextfilter
- furo
- tqdm
- psutil
- biopython
- numba
- numpy
- pyyaml
- pandas
- h5py
- contextlib2
- xxhash
- regex
- pydivsufsort
- pyahocorasick
- numba
- numpy
- pyyaml
- pandas
- h5py
- contextlib2
- xxhash
- biopython
- psutil
- tqdm
- scikit-learn
- regex
- pydivsufsort


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl alphabase-1.0.2:

    pip install alphabase-1.0.2.whl


نصب پکیج tar.gz alphabase-1.0.2:

    pip install alphabase-1.0.2.tar.gz