معرفی شرکت ها


alpha-shapes-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

reconstruct the shape of a 2D point cloud.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل alpha-shapes-0.0.1
نام alpha-shapes
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Panagiotis Zestanakis
ایمیل نویسنده panosz@gmail.com
آدرس صفحه اصلی https://github.com/panosz/alpha_shapes
آدرس اینترنتی https://pypi.org/project/alpha-shapes/
مجوز -
# alpha_shapes A Python package for reconstructing the shape of a 2D point cloud on the plane. ## Table of Contents * **[Introduction](#introduction)** * **[Usage](#usage)** * **[Features](#features)** * **[Optimization](#optimization)** * **[Normalization](#normalization)** * **[Inspiration](#inspiration)** ## Introduction Given a finite set of points (or point cloud) in the Euclidean plane, [alpha shapes](https://en.wikipedia.org/wiki/Alpha_shape) are members of a family of closed polygons on the 2D plane associated with the shape of this point cloud. Each alpha shape is associated with a single non negative parameter **α**. Intuitively an alpha shape can be conceptualized as follows. Imagine carving out the plane using a cookie scoop of radius 1/**α**, without removing any of the points in the point cloud. The shape that remains **is** the shape of the point cloud. If we replace the arc-like edges, due to the circular rim of the scoop, with straight segments, we are left with the alpha shape of parameter **α**. ## Usage Imports: ```python import matplotlib.pyplot as plt from descartes import PolygonPatch from alpha_shapes.alpha_shapes import Alpha_Shaper ``` Define a set of points: ```python points = [(0., 0.), (0., 1.), (1., 1.1), (1., 0.), (0.25, 0.15), (0.65, 0.45), (0.75, 0.75), (0.5, 0.5), (0.5, 0.25), (0.5, 0.75), (0.25, 0.5), (0.75, 0.25), (0., 2.), (0., 2.1), (1., 2.1), (0.5, 2.5), (-0.5, 1.5), (-0.25, 1.5), (-0.25, 1.25), (0, 1.25), (1.5, 1.5), (1.25, 1.5), (1.25, 1.25), (1, 1.25), (0.5, 2.25), (1., 2.), (0.25, 2.15), (0.65, 2.45), (0.75, 2.75), (0.5, 2.25), (0.5, 2.75), (0.25, 2.5), (0.75, 2.25)] ``` Create the alpha shaper: ```python shaper = Alpha_Shaper(points) ``` For the alpha shape to be calculated, the user must choose a value for the `alpha` parameter. Here, let us set `alpha` to 3.0: ```python alpha = 3.0 alpha_shape = shaper.get_shape(alpha=alpha) ``` Visualize the result: ```python fig, (ax0, ax1) = plt.subplots(1, 2) ax0.scatter(*zip(*points)) ax0.set_title('data') ax1.scatter(*zip(*points)) ax1.add_patch(PolygonPatch(alpha_shape, alpha=0.2, color='r')) ax1.set_title(f"$\\alpha={alpha:.2}$") for ax in (ax0, ax1): ax.set_aspect('equal') plt.show() ``` ![image](./figures/Figure_1.png) The resulting shape is only a rough outline of the figure formed by the point set. However, increasing the value of `alpha` to 4.5 yields much better results. ```python alpha = 4.5 alpha_shape = shaper.get_shape(alpha=alpha) ``` ![image](./figures/Figure_2.png) ## Features ### Optimization A satisfactory calculation of the alpha shape requires a successful guess of the alpha parameter. While trial and error might work well in some cases, users can let the `Alpha_Shaper` choose a value for them. That is what the `optimize` method is about. ```python >>> alpha_opt, alpha_shape = shaper.optimize() >>> alpha_opt 5.331459512629295 ``` ![image](./figures/simple_optimized.png) The optimize method runs efficiently for relatively large point clouds. Here we calculate the optimal alpha shape of an ensemble of 1000 random points uniformly distributed on the unit square. ```python >>> from time import time >>> points = np.random.random((1000, 2)) >>> alpha_shaper = Alpha_Shaper(points) >>> ts = time() >>> alpha_opt, alpha_shape = alpha_shaper.optimize() >>> te = time() >>> print(f'optimization took: {te-ts:.2} sec') optimization took: 0.41 sec ``` ![image](./figures/large_rand.png) ### Normalization Before calculating the alpha shape, Alpha_Shaper normalizes by default the input points so that they are distributed on the unit square. When there is a scale separation along the x and y direction, deactivating this feature may yield surprising results. ```python import numpy as np # Scale the points along the x-dimension x_scale = 1e-3 points = np.array(points) points[:, 0] *= x_scale # Create the alpha shape without accounting for the x and y scale separation unnormalized_shaper = Alpha_Shaper(points, normalize=False) _, alpha_shape_unscaled = unnormalized_shaper.optimize() # If the characteristic scale along each axis varies significantly, # it may make sense to turn on the `normalize` option. shaper = Alpha_Shaper(points, normalize=True) _, alpha_shape_scaled = shaper.optimize() # Scale the points along the x-dimension x_scale = 1e-3 points = np.array(points) points[:, 0] *= x_scale # Create the alpha shape without accounting for the x and y scale separation unnormalized_shaper = Alpha_Shaper(points, normalize=False) _, alpha_shape_unscaled = unnormalized_shaper.optimize() # If the characteristic scale along each axis varies significantly, # it may make sense to turn on the `normalize` option. shaper = Alpha_Shaper(points, normalize=True) _, alpha_shape_scaled = shaper.optimize() ``` ![image](./figures/normalization_effect.png) ## Inspiration This library is inspired by the [alphashape](https://github.com/bellockk/alphashape) library.


نیازمندی

مقدار نام
- numpy
- shapely
- matplotlib


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl alpha-shapes-0.0.1:

    pip install alpha-shapes-0.0.1.whl


نصب پکیج tar.gz alpha-shapes-0.0.1:

    pip install alpha-shapes-0.0.1.tar.gz