معرفی شرکت ها


alns-5.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A flexible implementation of the adaptive large neighbourhood search (ALNS) algorithm.
ویژگی مقدار
سیستم عامل -
نام فایل alns-5.0.4
نام alns
نسخه کتابخانه 5.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Niels Wouda
ایمیل نویسنده nielswouda@gmail.com
آدرس صفحه اصلی https://github.com/N-Wouda/ALNS
آدرس اینترنتی https://pypi.org/project/alns/
مجوز MIT
[![PyPI version](https://badge.fury.io/py/alns.svg)](https://badge.fury.io/py/alns) [![ALNS](https://github.com/N-Wouda/ALNS/actions/workflows/alns.yaml/badge.svg)](https://github.com/N-Wouda/ALNS/actions/workflows/alns.yaml) [![Documentation Status](https://readthedocs.org/projects/alns/badge/?version=latest)](https://alns.readthedocs.io/en/latest/?badge=latest) [![codecov](https://codecov.io/gh/N-Wouda/ALNS/branch/master/graph/badge.svg)](https://codecov.io/gh/N-Wouda/ALNS) ``alns`` is a general, well-documented and tested implementation of the adaptive large neighbourhood search (ALNS) metaheuristic in Python. ALNS is an algorithm that can be used to solve difficult combinatorial optimisation problems. The algorithm begins with an initial solution. Then the algorithm iterates until a stopping criterion is met. In each iteration, a destroy and repair operator are selected, which transform the current solution into a candidate solution. This candidate solution is then evaluated by an acceptance criterion, and the operator selection scheme is updated based on the evaluation outcome. `alns` depends only on `numpy` and `matplotlib`. It may be installed in the usual way as ``` pip install alns ``` The documentation is available [here][1]. ### Getting started If you are new to metaheuristics or ALNS, you might benefit from reading the [introduction to ALNS][11] page. The `alns` library provides the ALNS algorithm and various acceptance criteria, operator selection schemes, and stopping criteria. To solve your own problem, you should provide the following: - A solution state for your problem that implements an `objective()` function. - An initial solution. - One or more destroy and repair operators tailored to your problem. A "quickstart" code template is available [here][10]. ### Examples We provide several example notebooks showing how the ALNS library may be used. These include: - The travelling salesman problem (TSP), [here][2]. We solve an instance of 131 cities using very simple destroy and repair heuristics. - The capacitated vehicle routing problem (CVRP), [here][8]. We solve an instance with 241 customers using a combination of a greedy repair operator, and a _slack-induced substring removal_ destroy operator. - The cutting-stock problem (CSP), [here][4]. We solve an instance with 180 beams over 165 distinct sizes in only a very limited number of iterations. - The resource-constrained project scheduling problem (RCPSP), [here][6]. We solve an instance with 90 jobs and 4 resources using a number of different operators and enhancement techniques from the literature. - The permutation flow shop problem (PFSP), [here][9]. We solve an instance with 50 jobs and 20 machines. Moreover, we demonstrate multiple advanced features of ALNS, including auto-fitting the acceptance criterion and adding local search to repair operators. We also demonstrate how one could tune ALNS parameters. Finally, the features notebook gives an overview of various options available in the `alns` package. In the notebook we use these different options to solve a toy 0/1-knapsack problem. The notebook is a good starting point for when you want to use different schemes, acceptance or stopping criteria yourself. It is available [here][5]. ### Contributing We are very grateful for any contributions you are willing to make. Please have a look [here][3] to get started. If you aim to make a large change, it is helpful to discuss the change first in a new GitHub issue. Feel free to open one! ### Getting help If you are looking for help, please follow the instructions [here][7]. [1]: https://alns.readthedocs.io/en/latest/ [2]: https://alns.readthedocs.io/en/latest/examples/travelling_salesman_problem.html [3]: https://alns.readthedocs.io/en/latest/setup/contributing.html [4]: https://alns.readthedocs.io/en/latest/examples/cutting_stock_problem.html [5]: https://alns.readthedocs.io/en/latest/examples/alns_features.html [6]: https://alns.readthedocs.io/en/latest/examples/resource_constrained_project_scheduling_problem.html [7]: https://alns.readthedocs.io/en/latest/setup/getting_help.html [8]: https://alns.readthedocs.io/en/latest/examples/capacitated_vehicle_routing_problem.html [9]: https://alns.readthedocs.io/en/latest/examples/permutation_flow_shop_problem.html [10]: https://alns.readthedocs.io/en/latest/setup/template.html [11]: https://alns.readthedocs.io/en/latest/setup/introduction_to_alns.html


نیازمندی

مقدار نام
>=1.15.2 numpy
>=2.2.0 matplotlib


زبان مورد نیاز

مقدار نام
>=3.7,<4.0 Python


نحوه نصب


نصب پکیج whl alns-5.0.4:

    pip install alns-5.0.4.whl


نصب پکیج tar.gz alns-5.0.4:

    pip install alns-5.0.4.tar.gz