.. image:: https://github.com/aemonge/alicia/raw/main/docs/DallE-Alicia-logo.jpg
:width: 75px
:align: left
.. image:: https://img.shields.io/badge/badges-awesome-green.svg
:target: https://github.com/Naereen/badges
.. image:: https://img.shields.io/badge/Made%20with-Python-1f425f.svg
:target: https://www.python.org/
.. image:: https://img.shields.io/pypi/v/ansicolortags.svg
:target: https://pypi.python.org/pypi/alicia/
.. image:: https://img.shields.io/pypi/dm/ansicolortags.svg
:target: https://pypi.python.org/pypi/alicia/
.. image:: https://img.shields.io/pypi/l/ansicolortags.svg
:target: https://pypi.python.org/pypi/ansicolortags/
.. image:: https://img.shields.io/badge/say-thanks-ff69b4.svg
:target: https://saythanks.io/to/kennethreitz
================================================
AlicIA
================================================
::
Usage: alicia [OPTIONS] COMMAND [ARGS]...
A CLI to download, create, modify, train, test, predict and compare an image classifiers.
Supporting mostly all torch-vision neural networks and datasets.
This will also identify cute 🐱 or a fierce 🐶, also flowers or what type of
🏘️ you should be.
Options:
-v, --verbose
-g, --gpu
--version Show the version and exit.
--help Show this message and exit.
Commands:
compare Compare the info, accuracy, and step speed two (or more by...
create Creates a new model for a given architecture.
download Download a MNIST dataset with PyTorch and split it into...
info Display information about a model architecture.
modify Changes the hyper parameters of a model.
predict Predict images using a pre trained model, for a given folder...
test Test a pre trained model.
train Train a given architecture with a data directory containing a...
View a FashionMNIST demo
-----------------------------------------------
.. image:: https://asciinema.org/a/561138.png
:target: https://asciinema.org/a/561138?autoplay=1"
Install and usage
================================================
::
pip install alicia
alicia --help
If you just want to see a quick showcase of the tool, download and run `showcase.sh` https://github.com/aemonge/alicia/raw/main/docs/showcase.sh
Features
-----------------------------------------------
To see the full list of features, and option please refer to `alicia --help`
* Download common torchvision datasets (tested with the following):
- MNIST
- FashionMNIST
- Flowers102
- EMNIST
- StanfordCars
- KMNIST and CIFAR10
* Select different transforms to train.
* Train, test and predict using different custom-made and torch-vision models:
- SqueezeNet
- AlexNet
- MNASNet
* Get information about each model.
* Compare models training speed, accuracy, and meta information.
* View test prediction results in the console, or with matplotlib.
* Adds the network training history log, to the model. To enhance the info and compare.
* Supports pre-trained models, with weights settings.
* Automatically set the input size based on the image resolution.
References
-----------------------------------------------
Useful links found and used while developing this
* https://medium.com/analytics-vidhya/creating-a-custom-dataset-and-dataloader-in-pytorch-76f210a1df5d
* https://stackoverflow.com/questions/51911749/what-is-the-difference-between-torch-tensor-and-torch-tensor
* https://deepai.org/dataset/mnist
* https://medium.com/fenwicks/tutorial-1-mnist-the-hello-world-of-deep-learning-abd252c47709