معرفی شرکت ها


alibaba-pai-0.1.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Alibaba Cloud PAI Python SDK
ویژگی مقدار
سیستم عامل -
نام فایل alibaba-pai-0.1.7
نام alibaba-pai
نسخه کتابخانه 0.1.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alibaba PAI team
ایمیل نویسنده -
آدرس صفحه اصلی https://www.aliyun.com/product/bigdata/product/learn
آدرس اینترنتی https://pypi.org/project/alibaba-pai/
مجوز Apache License 2.0
# Alibaba PAI Python SDK AliPAI Python SDK is provided by PAI team of Alibaba computing platform. It provides convenience for users to access [PAI service in Alibaba Cloud](https://www.aliyun.com/product/bigdata/product/learn). In current, PAI SDK supports PAIFlow(ML Pipeline Service of PAI) service, other PAI services, such as EAS(Elastic Algorithm Service) and Blade will be included soon. ## Installation To install the PAI sdk, use the below command in terminal. ```bash python -m pip install alipai ``` ## Usage ### Setup default PAI session Before use PAI service via SDK, developer should initialize the default PAI session by providing credential and region_id of service. > **Pipeline service of PAI is currently provided in `cn-shanghai` region only**. ```python from pai.core.session import setup_default_session session = setup_default_session(access_key_id="your_access_key", access_key_secret="your_access_secret", region_id="your_region_id") ``` ### Access Pipeline Service #### Use PipelineTemplate PipelineTemplate instance includes the definition of "Workflow" use in PAI pipeline service. It could be fetched from remote PAI service or constructed from local Pipeline/Component. Saved pipeline template has unique `pipeline_id` which is generated by pipeline service. Remote pipeline template could be fetched using identifier-provider-version or pipeline_id. PAI provides a list of public pipeline templates which could be used as workflow template to run or to build pipeline. These templates are accessible by the specific provider `pai.common.ProviderAlibabaPAI` in `PipelineTemplate.list`. ```python from pai.pipeline import PipelineTemplate from pai.common import ProviderAlibabaPAI # search PipelineTemplate which provide by `PAI` and include `xflow` in identifier. template = next(PipelineTemplate.list(identifie="xflow", provider=ProviderAlibabaPAI)) # view template inputs/outputs. template template.inputs template.outputs ``` After submitting run job, users are able to inspect the detailed workflow DAG, execution log and outputs of the pipeline by visiting the job detail URL printed in console. ```python from pai.common import ProviderAlibabaPAI from pai.pipeline import PipelineTemplate # Get specific template by Identifier-Provider-Version template = PipelineTemplate.get_by_identifier(identifier="split-xflow-maxCompute", provider=ProviderAlibabaPAI, version="v1") xflow_execution = { "odpsInfoFile": "/share/base/odpsInfo.ini", "endpoint": "http://service.cn-shanghai.maxcompute.aliyun.com/api", "logViewHost": "http://logview.odps.aliyun.com", "odpsProject": "your_odps_project", } # run pipeline use provide arguments. job = template.run(job_name="demo-split-job", arguments={ "inputArtifact": "odps://pai_online_project/tables/mnist_data", "execution": xflow_execution, "fraction": 0.7}, wait=True) job.get_outputs() ``` ### Build runnable and reusable pipeline PAI Pipeline Service supports nested user-defined workflow. Composite pipeline is runnable by providing required arguments. Saved pipeline template could be used as a step to build a new pipeline. ```python def create_composite_pipeline(): # Definite the inputs parameters in pipeline execution_input = PipelineParameter(name="execution", typ=dict) cols_to_double_input = PipelineParameter(name="cols_to_double") table_input = PipelineArtifact(name="data_source", metadata=ArtifactMetadata( data_type=ArtifactDataType.DataSet, location_type=ArtifactLocationType.MaxComputeTable)) # Pipeline step from remote PAI service. type_transform_step = PipelineStep( identifier="type-transform-xflow-maxCompute", provider=ProviderAlibabaPAI, version="v1", name="typeTransform", inputs={ "inputArtifact": table_input, "execution": execution_input, "outputTable": gen_temp_table(), "cols_to_double": cols_to_double_input, } ) split_template = PipelineTemplate.get_by_identifier(identifier="split-xflow-maxCompute", provider=ProviderAlibabaPAI, version="v1") split_step = split_template.as_step(inputs={"inputArtifact": type_transform_step.outputs[0], "execution": execution_input, "output1TableName": gen_temp_table(), "fraction": 0.5, "output2TableName": gen_temp_table(), }) # Initialize the pipeline instance by specific the steps and outputs. p = Pipeline( steps=[split_step], outputs=split_step.outputs[:2], ) return p p = create_composite_pipeline() # Run pipeline with required arguments. pipeline_run = p.run(job_name="demo-composite-pipeline-run", arguments={ "execution": xflow_execution, "cols_to_double": "time,hour,pm2,pm10,so2,co,no2", "data_source": "odps://pai_online_project/tables/wumai_data", }, wait=True) # Save Pipeline p.save(identifier="demo-composite-pipeline", version="v1") ```


نیازمندی

مقدار نام
==2.13.25 aliyun-python-sdk-core
>=3.0.2 aliyun-python-sdk-sts
>=1.1.10 enum34
>=0.14 graphviz
>=1.16.0 numpy
>=2.8.0 oss2
>=0.9.3.2 pyodps
>=5.3.1 pyyaml
>=1.15.0 six
==2.0.0 importlib-metadata


زبان مورد نیاز

مقدار نام
>=2.7 Python


نحوه نصب


نصب پکیج whl alibaba-pai-0.1.7:

    pip install alibaba-pai-0.1.7.whl


نصب پکیج tar.gz alibaba-pai-0.1.7:

    pip install alibaba-pai-0.1.7.tar.gz