معرفی شرکت ها


algovis-0.1.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python library for visualising algorithms
ویژگی مقدار
سیستم عامل -
نام فایل algovis-0.1.6
نام algovis
نسخه کتابخانه 0.1.6
نگهدارنده ['hotshot07']
ایمیل نگهدارنده ['aroram@tcd.ie']
نویسنده hotshot07
ایمیل نویسنده aroram@tcd.ie
آدرس صفحه اصلی https://github.com/hotshot07/algovis
آدرس اینترنتی https://pypi.org/project/algovis/
مجوز AGPL-3.0
[![CodeFactor](https://www.codefactor.io/repository/github/hotshot07/algovis/badge/master?s=197e9c6e50413744c0a2c43785a6dee096ee1a4d)](https://www.codefactor.io/repository/github/hotshot07/algovis/overview/master) ![PyPI](https://img.shields.io/pypi/v/algovis) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/algovis) [![Downloads](https://pepy.tech/badge/algovis)](https://pepy.tech/project/algovis) <!-- ![PyPI - Downloads](https://img.shields.io/pypi/dm/algovis) --> ![GitHub last commit](https://img.shields.io/github/last-commit/hotshot07/algovis) ![PyPI - License](https://img.shields.io/pypi/l/algovis) ![Netlify](https://img.shields.io/netlify/f4cede18-f2c6-4299-abc1-92b8a8ef9995) [![Made by](https://img.shields.io/badge/Made%20by-hotshot07-blue)](https://mackweb.in) [![Twitter Follow](https://img.shields.io/twitter/follow/gamesetmatch07?style=social)](https://twitter.com/elonmusk) Algovis is a python library made for visualizing algorithms. Refer to the [documentation](https://algovisdocs.netlify.app/) for more info. Currently the library has these algorithms #### Sorting - Bubble Sort - Insertion Sort - Selection Sort - Merge Sort - Quick Sort #### Searching - Linear Search - Binary Search ## Getting Started ### Prerequisites I would highly suggest making a virtual environment. The main purpose of a Python virtual environments is to create an isolated environment for Python projects. You can read more about them [here](https://realpython.com/python-virtual-environments-a-primer/). ```bash # making a test folder $mkdir test_algovis # make it the current directory $cd test_algovis # making a virtual environment (you can replace envname with whatever name you like) $python3 -m venv envname # activating it $source envname/bin/activate ``` You can only access algovis inside this virtual environment. To leave this virtual env when you're done trying out the library, type ```bash $deactivate ``` ### Installing ```bash $pip3 install algovis ``` ### Using the sorting package #### Visualize method ```python # import the sorting package from library from algovis import sorting # importing random module to shuffle the list import random # Making a list of 100 integers from 1-100 # using list comprehension my_list = [i+1 for i in range(100)] # shuffling the list random.shuffle(my_list) # making a BubbleSort class object by passing the shuffled list bs_object = sorting.BubbleSort(my_list) # calling the visualize method bs_object.visualize(interval= 100) ``` ##### Output <img src="https://media.giphy.com/media/ieb13rrmvVWC02zmI8/giphy.gif" width="600"> #### sort method ```python # lets work on a shorter example now my_list = [i + 1 for i in range(10)] # shuffling the list using random module random.shuffle(my_list) #making a quicksort object qs_object = sorting.QuickSort(my_list) #sorting in reverse with steps qs_object.sort(pivot = "first", steps = True, reverse = True) ``` #### evaluate method ```python # calling the evaluate method and passing the optional parameter 'iterations' # the list is sorted 'iterations' number of times and the min, max and average time taken #to sort the list is returned in form of a formatted table bs_object.evaluate(iterations = 100) ``` #### info method ```python # This method gives us information about the algorithm bs_object.info() ``` #### code method ```python # It prints out the function for the algorithm bs_object.code() ``` >My terminal config is iTerm2 + ohmyzsh + powerlevel10k with dark backgroud. Colors may appear different in your terminal output. It's recommended to change the terminal color to something darker ### Using the searching package >The searching package has the same methods as sorting, just instead of 'sort' you have 'search' >Refer to the [documentation](https://algovisdocs.netlify.app/) for more info #### search method ```python #importing searching package from algovis import searching # making a list of integers from 1 to 100 # using list comprehension my_list = [i+1 for i in range(100)] #making binary search object bin_search = searching.BinarySearch(my_list) #calling the search method bin_search.search(42, steps = True) ``` #### visualize method ```python # calling the visualize method # interval is the time between two different frames of the animation bin_search.visualize(42, interval = 1000) ``` <img src ="https://media.giphy.com/media/l3Cktj8ULcjHK3c90E/giphy.gif" width ="600"> ```python # or if you want to linear search 42 lin_search = searching.LinearSearch(my_list) # setting a less interval to make a much faster animation lin_search.visualize(42, interval = 100) ``` ### Doumentation The documentation is built with [MKdocs](https://www.mkdocs.org/) using [material](https://squidfunk.github.io/mkdocs-material/) theme and is hosted on netlify. You can read it [here](https://algovisdocs.netlify.app/) ### Author * **Mayank Arora** *(hotshot07)* ### License This project is licensed under the GNU Affero General Public License v3 (AGPL-3.0) - see the [LICENSE](LICENSE) file for details


نیازمندی

مقدار نام
>=3.2.1,<4.0.0 matplotlib
>=3.3.1,<4.0.0 rich


زبان مورد نیاز

مقدار نام
>=3.7.0,<4.0.0 Python


نحوه نصب


نصب پکیج whl algovis-0.1.6:

    pip install algovis-0.1.6.whl


نصب پکیج tar.gz algovis-0.1.6:

    pip install algovis-0.1.6.tar.gz