معرفی شرکت ها


algolink-0.7.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Machine Learning Lifecycle Framework
ویژگی مقدار
سیستم عامل -
نام فایل algolink-0.7.9
نام algolink
نسخه کتابخانه 0.7.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Leepand
ایمیل نویسنده leepand6@gmail.com
آدرس صفحه اصلی https://github.com/leepand/algolink
آدرس اینترنتی https://pypi.org/project/algolink/
مجوز Apache-2.0
.. image:: ebonite.jpg Ebonite is a machine learning lifecycle framework. It allows you to persist your models and reproduce them (as services or in general). Installation ============ :: pip install ebonite Quickstart ============= Before you start with Ebonite you need to have your model. This could be a model from your favorite library (list of supported libraries is below) or just a custom Python function working with typical machine learning data. .. code-block:: python import numpy as np def clf(data): return (np.sum(a, axis=-1) > 1).astype(np.int32) Moreover, your custom function can wrap a model from some library. This gives you flexibility to use not only pure ML models but rule-based ones (e.g., as a service stub at project start) and hybrid (ML with pre/postprocessing) ones which are often applied to solve real world problems. When a model is prepared you should create an Ebonite client. .. code-block:: python from ebonite import Ebonite ebnt = Ebonite.local() Then create a task and push your model object with some sample data. Sample data is required for Ebonite to determine structure of inputs and outputs for your model. .. code-block:: python task = ebnt.get_or_create_task('my_project', 'my_task') model = task.create_and_push_model(clf, test_x, 'my_clf') You are awesome! Now your model is safely persisted in a repository. Later on in other Python process you can load your model from this repository and do some wonderful stuff with it, e.g., create a Docker image named `my_service` with an HTTP service wrapping your model. .. code-block:: python from ebonite import Ebonite ebnt = Ebonite.local() task = ebnt.get_or_create_task('my_project', 'my_task') model = client.get_model('my_clf', task) client.build_image('my_service', model) Check out examples (in `examples <examples/>`_ directory) and documentation to learn more. Documentation ============= ... is available `here <https://ebonite.readthedocs.io/en/latest/>`_ Examples ======== ... are available in this `folder </examples/>`_. Here are some of them: * `Jupyter Notebook guide </examples/notebook_tutorial/ebonite_tutorial.ipynb>`_ * `Scikit-learn guide </examples/sklearn_model/>`_ * `TensorFlow 2.0 </examples/tensorflow_v2_example/>`_ * etc. Supported libraries and repositories ==================================== * Models * your arbitrary Python function * scikit-learn * TensorFlow (1.x and 2.x) * XGBoost * LightGBM * PyTorch * CatBoost * Model input / output data * NumPy * pandas * images * Model repositories * in-memory * local filesystem * SQLAlchemy * Amazon S3 * Serving * Flask * aiohttp Create an issue if you need support for something other than that! Contributing ============ Read `this <CONTRIBUTING.rst>`_ Changelog ========= Current release candidate ------------------------- 0.6.2 (2020-06-18) ------------------ * Minor bugfixes 0.6.1 (2020-06-15) ------------------ * Deleted accidental debug 'print' call :/ 0.6.0 (2020-06-12) ------------------ * Prebuilt flask server images for faster image build * More and better methods in Ebonite client * Pipelines - chain Models methods into one Model-like objects * Refactioring of image and instance API * Rework of pandas DatasetType: now with column types, even non-primitive (e.g. datetimes) * Helper functions for stanalone docker build/run * Minor bugfixes and features 0.5.2 (2020-05-16) ------------------ * Fixed dependency inspection to include wrapper dependencies * Fixed s3 repo to fail with subdirectories * More flexible way to add parameters for instance running (e.g. docker run arguments) * Added new type of Requirement to represent unix packages - for example, libgomp for xgboost * Minor tweaks 0.5.1 (2020-04-16) ------------------ * Minor fixes and examples update 0.5.0 (2020-04-10) ------------------ * Built Docker images and running Docker containers along with their metadata are now persisted in metadata repository * Added possibility to track running status of Docker container via Ebonite client * Implemented support for pushing built images to remote Docker registry * Improved testing of metadata repositories and Ebonite client and fixed discovered bugs in them * Fixed bug with failed transactions not being rolled back * Fixed bug with serialization of complex models some component of which could not be pickled * Decomposed model IO from model wrappers * bytes are now used for binary datasets instead of file-like objects * Eliminated build_model_flask_docker in favor of Server-driven abstraction * Sped up PickleModelIO by avoiding ModelAnalyzer calls for non-model objects * Sped up Model.create by calling model methods with given input data just once * Dataset types and model wrappers expose their runtime requirements 0.4.0 (2020-02-17) ------------------ * Implemented asyncio-based server via aiohttp library * Implemented support for Tensorflow 2.x models * Changed default type of base python docker image to "slim" * Added 'description' and 'params' fields to Model. 'description' is a text field and 'params' is a dict with arbitrary keys * Fixed bug with building docker image with different python version that the Model was created with 0.3.5 (2020-01-31) ------------------ * Fixed critical bug with wrapper_meta 0.3.4 (2020-01-31) ------------------ * Fixed bug with deleting models from tasks * Support working with model meta without requiring installation of all model dependencies * Added region argument for s3 repository * Support for delete_model in Ebonite client * Support for force flag in delete_model which deletes model even if artifacts could not be deleted 0.3.3 (2020-01-10) ------------------ * Eliminated tensorflow warnings. Added more tests for providers/loaders. Fixed bugs in multi-model provider/builder. * Improved documentation * Eliminate useless "which docker" check which fails on Windows hosts * Perform redirect from / to Swagger API docs in Flask server * Support for predict_proba method in ML model * Do not fix first dimension size for numpy arrays and torch tensors * Support for Pytorch JIT (TorchScript) models * Bump tensorflow from 1.14.0 to 1.15.0 * Added more tests 0.3.2 (2019-12-04) ------------------ * Multi-model interface bug fixes 0.3.1 (2019-12-04) ------------------ * Minor bug fixes 0.3.0 (2019-11-27) ------------------ * Added support for LightGBM models * Added support for XGBoost models * Added support for PyTorch models * Added support for CatBoost models * Added uwsgi server for flask containers 0.2.1 (2019-11-19) ------------------ * Minor bug fixes 0.2.0 (2019-11-14) ------------------ * First release on PyPI.


نحوه نصب


نصب پکیج whl algolink-0.7.9:

    pip install algolink-0.7.9.whl


نصب پکیج tar.gz algolink-0.7.9:

    pip install algolink-0.7.9.tar.gz