معرفی شرکت ها


alexafsm-0.1.11


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Finite-state machine library for building complex Alexa conversations
ویژگی مقدار
سیستم عامل -
نام فایل alexafsm-0.1.11
نام alexafsm
نسخه کتابخانه 0.1.11
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Allen AI
ایمیل نویسنده a-dialog-research@allenai.org
آدرس صفحه اصلی https://github.com/allenai/alexafsm
آدرس اینترنتی https://pypi.org/project/alexafsm/
مجوز Apache Software License 2.0
alexafsm ======== - Finite-state machine library for building complex Alexa conversations. - Free software: Apache Software License 2.0. Dialog agents need to keep track of the various pieces of information to make decisions how to respond to a given user input. This is referred to as context, session, or state tracking. As the dialog complexity increases, this state-tracking logic becomes harder to write, debug, and maintain. This library takes the finite-state machine design approach to address this complexity. Developers using this library can model dialog agents with first-class concepts such as states, attributes, transition, and actions. Visualization and other tools are also provided to help understand and debug complex FSM conversations. Also check out our `blog post <https://medium.com/@vha14/alexafsm-a-finite-state-machine-python-library-for-building-complex-alexa-skills-61c3af5a299d>`__. Features -------- - FSM-based library for building Alexa skills with complex dialog state tracking. - Tools to validate, visualize, and print the FSM graph. - Support analytics with `VoiceLabs <http://voicelabs.co/>`__. - Can be paired with any Python server library (Flask, CherryPy, etc.) - Written in Python 3.6 (primarily for type annotation and string interpolation). Getting Started --------------- Install from `PyPi <https://pypi.python.org/pypi/alexafsm>`__: :: pip install alexafsm Consult the `Alexa skill search <https://github.com/allenai/alexafsm/tree/master/tests/skillsearch>`__ skill in the ``tests`` directory for details of how to write an ``alexafsm`` skill. An Alexa skill is composed of the following three classes: ``SessionAttributes``, ``States``, and ``Policy``. ``SessionAttributes`` ~~~~~~~~~~~~~~~~~~~~~ ``SessionAttributes`` is a class that holds session attributes (``alexa_request['session']['attributes']``) and any information we need to keep track of dialog state. \* The core attributes are ``intent``, ``slots``, and ``state``. \* ``intent`` and ``slots`` map directly to Alexa's concepts. \* ``slots`` should be of type ``Slots``, which in turn is defined as a named tuple, one field for each slot type. In the skill search example, ``Slots = namedtuple('Slots', ['query', 'nth']``). This named tuple class should be specified in the class definition as ``slots_cls = Slots``. \* ``state`` holds the name of the current state in the state machine. \* Each Alexa skill can contain arbitrary number of additional attributes. If an attribute is not meant to be sent back to Alexa server (e.g. so as to reduce the payload size), it should be added to ``not_sent_fields``. In the skill search example, ``searched`` and ``first_time`` are not sent to Alexa server. See the implementation of skill search skill's ```SessionAttributes`` <https://github.com/allenai/alexafsm/blob/master/tests/skillsearch/session_attributes.py>`__ ``States`` ~~~~~~~~~~ ``States`` is a class that specifies most of the FSM and its behavior. It holds a reference to a ``SessionAttributes`` object, the type of which is specified by overriding the ``session_attributes_cls`` class attribute. The FSM is specified by a list of parameter-less methods. Consider the following method: .. code:: python @with_transitions( { 'trigger': NEW_SEARCH, 'source': '*', 'prepare': 'm_search', 'conditions': 'm_has_result_and_query' }, { 'trigger': NTH_SKILL, 'source': '*', 'conditions': 'm_has_nth', 'after': 'm_set_nth' }, { 'trigger': PREVIOUS_SKILL, 'source': '*', 'conditions': 'm_has_previous', 'after': 'm_set_previous' }, { 'trigger': NEXT_SKILL, 'source': '*', 'conditions': 'm_has_next', 'after': 'm_set_next' }, { 'trigger': amazon_intent.NO, 'source': 'has_result', 'conditions': 'm_has_next', 'after': 'm_set_next' } ) def has_result(self) -> response.Response: """Offer a preview of a skill""" attributes = self.attributes query = attributes.query skill = attributes.skill asked_for_speech = '' if attributes.first_time_presenting_results: asked_for_speech = _you_asked_for(query) if attributes.number_of_hits == 1: skill_position_speech = 'The only skill I found is' else: skill_position_speech = f'The {ENGLISH_NUMBERS[attributes.skill_cursor]} skill is' if attributes.first_time_presenting_results: if attributes.number_of_hits > 6: num_hits = f'Here are the top {MAX_SKILLS} results.' else: num_hits = f'I found {len(attributes.skills)} skills.' skill_position_speech = f'{num_hits} {skill_position_speech}' return response.Response( speech=f"{asked_for_speech} " f" {skill_position_speech} {_get_verbal_skill(skill)}." f" {HEAR_MORE}", card=f"Search for {query}", card_content=f""" Top result: {skill.name} {_get_highlights(skill)} """, reprompt=DEFAULT_PROMPT ) Each method encodes the following: - The name of the method is also the name of a state (``describing``) in the FSM. - The method may be decorated with one or several transitions, using ``with_transitions`` decorators. Transitions can be inbound (``source`` needs to be specified) or outbound (``dest`` needs to be specified). - Each method returns a ``Response`` object which is sent to Alexa. - Transitions can be specified with ``prepare`` and ``conditions`` attributes. See https://github.com/tyarkoni/transitions for detailed documentations. The values of these attributes are parameter-less methods of the ``Policy`` class. - The ``prepare`` methods are responsible for "actions" of the FSM such as querying a database. The ``after`` methods are responsible for updating the state after the transition completes. They are the only methods responsible for side-effects, e.g. modifying the attributes of the states. This design facilitates ease of debugging. ``Policy`` ~~~~~~~~~~ ``Policy`` is the class that holds everything together. It contains a reference to a ``States`` object, the type of which is specified by overriding the ``states_cls`` class attribute. A ``Policy`` object initializes itself by constructing a FSM based on the ``States`` type. ``Policy`` class contains the following key methods: - ``handle`` takes an Alexa request, parses it, and hands over all intent requests to ``execute`` method. - ``execute`` updates the policy's internal state with the request's details (intent, slots, session attributes), then calls ``trigger`` to make the state transition. It then looks up the corresponding response generating methods of the ``States`` class to generate a response for Alexa. - ``initialize`` will initialize a policy without any request. - ``validate`` performs validation of a policy object based on ``Policy`` class definition and a intent schema json file. It looks for intents that are not handled, invalid source/dest/prepare specifications, and unreachable states. The test in ``test_skillsearch.py`` performs such validation as a test of ``alexafsm``. The Alexa skill search skill in the ``tests`` directory also contains a Flask-based server that shows how to use ``Policy`` in five lines of code: .. code:: python @app.route('/', methods=['POST']) def main(): req = flask_request.json policy = Policy.initialize() return json.dumps(policy.handle(req, settings.vi)).encode('utf-8') Other Tools ----------- ``alexafsm`` supports validation, graph visualization, and printing of the FSM. Validation ~~~~~~~~~~ Simply initialize a ``Policy`` before calling ``validate``. This function takes as input the path to the skill's Alexa intent schema json file and performs the following checks: - All Alexa intents have corresponding events/triggers in the FSM. - All states have either inbound or outbound transitions. - All transitions are specified with valid source and destination states. - All conditions and prepare actions are handled with methods in the ``Policy`` class. Change Detection with Record and Playback ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When making code changes that are not supposed to impact a skill's dialog logic, we may want a tool to check that the skill's logic indeed stay the same. This is done by first recording (``SkillSettings().record = True``) one or several sessions, making the code change, then checking if the changed code still produces the same set of dialogs (``SkillSettings().playback = True``). During playback, calls to databases such as ElasticSearch can be fulfilled from data read from files generated during the recording. This is done by decorating the database call with ``recordable`` function. See `the ElasticSearch call <https://github.com/allenai/alexafsm/blob/master/tests/skillsearch/clients.py#L40>`__ in Skill Search for an example usage. Graph Visualization ~~~~~~~~~~~~~~~~~~~ ``alexafsm`` uses the ``transitions`` library's API to draw the FSM graph. For example, the skill search skill's FSM can be visualized using the `graph.py <https://github.com/allenai/alexafsm/blob/master/tests/skillsearch/bin/graph.py>`__. invoked from `graph.sh <https://github.com/allenai/alexafsm/blob/master/tests/skillsearch/bin/graph.sh>`__. The resulting graph is displayed follow: .. figure:: https://github.com/allenai/alexafsm/blob/master/tests/skillsearch/fsm.png :alt: FSM Example FSM Example Graph Printout ~~~~~~~~~~~~~~ For complex graphs, it may be easier to inspect the FSM in text format. Use the ``print_machine`` method to accomplish this. The output for the skill search skill is below: .. code:: text Machine states: bad_navigate, describe_ratings, describing, exiting, has_result, helping, initial, is_that_all, no_query_search, no_result, search_prompt Events and transitions: Event: NthSkill Source: bad_navigate bad_navigate -> bad_navigate, conditions: ['m_has_nth'] bad_navigate -> has_result, conditions: ['m_has_nth'] Source: describe_ratings describe_ratings -> bad_navigate, conditions: ['m_has_nth'] describe_ratings -> has_result, conditions: ['m_has_nth'] Source: describing describing -> bad_navigate, conditions: ['m_has_nth'] describing -> has_result, conditions: ['m_has_nth'] Source: exiting exiting -> bad_navigate, conditions: ['m_has_nth'] exiting -> has_result, conditions: ['m_has_nth'] Source: has_result has_result -> bad_navigate, conditions: ['m_has_nth'] has_result -> has_result, conditions: ['m_has_nth'] Source: helping helping -> bad_navigate, conditions: ['m_has_nth'] helping -> has_result, conditions: ['m_has_nth'] Source: initial initial -> bad_navigate, conditions: ['m_has_nth'] initial -> has_result, conditions: ['m_has_nth'] Source: is_that_all is_that_all -> bad_navigate, conditions: ['m_has_nth'] is_that_all -> has_result, conditions: ['m_has_nth'] Source: no_query_search no_query_search -> bad_navigate, conditions: ['m_has_nth'] no_query_search -> has_result, conditions: ['m_has_nth'] Source: no_result no_result -> bad_navigate, conditions: ['m_has_nth'] no_result -> has_result, conditions: ['m_has_nth'] Source: search_prompt search_prompt -> bad_navigate, conditions: ['m_has_nth'] search_prompt -> has_result, conditions: ['m_has_nth'] Event: PreviousSkill Source: bad_navigate bad_navigate -> bad_navigate, conditions: ['m_has_previous'] bad_navigate -> has_result, conditions: ['m_has_previous'] Source: describe_ratings describe_ratings -> bad_navigate, conditions: ['m_has_previous'] describe_ratings -> has_result, conditions: ['m_has_previous'] Source: describing describing -> bad_navigate, conditions: ['m_has_previous'] describing -> has_result, conditions: ['m_has_previous'] Source: exiting exiting -> bad_navigate, conditions: ['m_has_previous'] exiting -> has_result, conditions: ['m_has_previous'] Source: has_result has_result -> bad_navigate, conditions: ['m_has_previous'] has_result -> has_result, conditions: ['m_has_previous'] Source: helping helping -> bad_navigate, conditions: ['m_has_previous'] helping -> has_result, conditions: ['m_has_previous'] Source: initial initial -> bad_navigate, conditions: ['m_has_previous'] initial -> has_result, conditions: ['m_has_previous'] Source: is_that_all is_that_all -> bad_navigate, conditions: ['m_has_previous'] is_that_all -> has_result, conditions: ['m_has_previous'] Source: no_query_search no_query_search -> bad_navigate, conditions: ['m_has_previous'] no_query_search -> has_result, conditions: ['m_has_previous'] Source: no_result no_result -> bad_navigate, conditions: ['m_has_previous'] no_result -> has_result, conditions: ['m_has_previous'] Source: search_prompt search_prompt -> bad_navigate, conditions: ['m_has_previous'] search_prompt -> has_result, conditions: ['m_has_previous'] Event: NextSkill Source: bad_navigate bad_navigate -> bad_navigate, conditions: ['m_has_next'] bad_navigate -> has_result, conditions: ['m_has_next'] Source: describe_ratings describe_ratings -> bad_navigate, conditions: ['m_has_next'] describe_ratings -> has_result, conditions: ['m_has_next'] Source: describing describing -> bad_navigate, conditions: ['m_has_next'] describing -> has_result, conditions: ['m_has_next'] Source: exiting exiting -> bad_navigate, conditions: ['m_has_next'] exiting -> has_result, conditions: ['m_has_next'] Source: has_result has_result -> bad_navigate, conditions: ['m_has_next'] has_result -> has_result, conditions: ['m_has_next'] Source: helping helping -> bad_navigate, conditions: ['m_has_next'] helping -> has_result, conditions: ['m_has_next'] Source: initial initial -> bad_navigate, conditions: ['m_has_next'] initial -> has_result, conditions: ['m_has_next'] Source: is_that_all is_that_all -> bad_navigate, conditions: ['m_has_next'] is_that_all -> has_result, conditions: ['m_has_next'] Source: no_query_search no_query_search -> bad_navigate, conditions: ['m_has_next'] no_query_search -> has_result, conditions: ['m_has_next'] Source: no_result no_result -> bad_navigate, conditions: ['m_has_next'] no_result -> has_result, conditions: ['m_has_next'] Source: search_prompt search_prompt -> bad_navigate, conditions: ['m_has_next'] search_prompt -> has_result, conditions: ['m_has_next'] Event: AMAZON.NoIntent Source: has_result has_result -> bad_navigate, conditions: ['m_has_next'] has_result -> has_result, conditions: ['m_has_next'] Source: describe_ratings describe_ratings -> is_that_all Source: describing describing -> search_prompt Source: is_that_all is_that_all -> search_prompt Event: DescribeRatings Source: bad_navigate bad_navigate -> describe_ratings, conditions: ['m_has_result'] Source: describe_ratings describe_ratings -> describe_ratings, conditions: ['m_has_result'] Source: describing describing -> describe_ratings, conditions: ['m_has_result'] Source: exiting exiting -> describe_ratings, conditions: ['m_has_result'] Source: has_result has_result -> describe_ratings, conditions: ['m_has_result'] Source: helping helping -> describe_ratings, conditions: ['m_has_result'] Source: initial initial -> describe_ratings, conditions: ['m_has_result'] Source: is_that_all is_that_all -> describe_ratings, conditions: ['m_has_result'] Source: no_query_search no_query_search -> describe_ratings, conditions: ['m_has_result'] Source: no_result no_result -> describe_ratings, conditions: ['m_has_result'] Source: search_prompt search_prompt -> describe_ratings, conditions: ['m_has_result'] Event: AMAZON.YesIntent Source: has_result has_result -> describing Source: describe_ratings describe_ratings -> describing Source: describing describing -> exiting Source: is_that_all is_that_all -> exiting Event: AMAZON.CancelIntent Source: no_result no_result -> exiting Source: search_prompt search_prompt -> exiting Source: is_that_all is_that_all -> exiting Source: bad_navigate bad_navigate -> exiting Source: no_query_search no_query_search -> exiting Source: describing describing -> is_that_all Source: has_result has_result -> is_that_all Source: describe_ratings describe_ratings -> is_that_all Source: initial initial -> search_prompt Source: helping helping -> search_prompt Event: AMAZON.StopIntent Source: no_result no_result -> exiting Source: search_prompt search_prompt -> exiting Source: is_that_all is_that_all -> exiting Source: bad_navigate bad_navigate -> exiting Source: no_query_search no_query_search -> exiting Source: describing describing -> is_that_all Source: has_result has_result -> is_that_all Source: describe_ratings describe_ratings -> is_that_all Source: initial initial -> search_prompt Source: helping helping -> search_prompt Event: NewSearch Source: bad_navigate bad_navigate -> exiting, conditions: ['m_searching_for_exit'] bad_navigate -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] bad_navigate -> no_query_search, conditions: ['m_no_query_search'] bad_navigate -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Source: describe_ratings describe_ratings -> exiting, conditions: ['m_searching_for_exit'] describe_ratings -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] describe_ratings -> no_query_search, conditions: ['m_no_query_search'] describe_ratings -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Source: describing describing -> exiting, conditions: ['m_searching_for_exit'] describing -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] describing -> no_query_search, conditions: ['m_no_query_search'] describing -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Source: exiting exiting -> exiting, conditions: ['m_searching_for_exit'] exiting -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] exiting -> no_query_search, conditions: ['m_no_query_search'] exiting -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Source: has_result has_result -> exiting, conditions: ['m_searching_for_exit'] has_result -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] has_result -> no_query_search, conditions: ['m_no_query_search'] has_result -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Source: helping helping -> exiting, conditions: ['m_searching_for_exit'] helping -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] helping -> no_query_search, conditions: ['m_no_query_search'] helping -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Source: initial initial -> exiting, conditions: ['m_searching_for_exit'] initial -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] initial -> no_query_search, conditions: ['m_no_query_search'] initial -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Source: is_that_all is_that_all -> exiting, conditions: ['m_searching_for_exit'] is_that_all -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] is_that_all -> no_query_search, conditions: ['m_no_query_search'] is_that_all -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Source: no_query_search no_query_search -> exiting, conditions: ['m_searching_for_exit'] no_query_search -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] no_query_search -> no_query_search, conditions: ['m_no_query_search'] no_query_search -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Source: no_result no_result -> exiting, conditions: ['m_searching_for_exit'] no_result -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] no_result -> no_query_search, conditions: ['m_no_query_search'] no_result -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Source: search_prompt search_prompt -> exiting, conditions: ['m_searching_for_exit'] search_prompt -> has_result, prepare: ['m_search'], conditions: ['m_has_result_and_query'] search_prompt -> no_query_search, conditions: ['m_no_query_search'] search_prompt -> no_result, prepare: ['m_search'], conditions: ['m_no_result'] Event: AMAZON.HelpIntent Source: bad_navigate bad_navigate -> helping Source: describe_ratings describe_ratings -> helping Source: describing describing -> helping Source: exiting exiting -> helping Source: has_result has_result -> helping Source: helping helping -> helping Source: initial initial -> helping Source: is_that_all is_that_all -> helping Source: no_query_search no_query_search -> helping Source: no_result no_result -> helping Source: search_prompt search_prompt -> helping History ======= 0.1.0 (2017-02-23) ------------------ * First release on PyPI.


نحوه نصب


نصب پکیج whl alexafsm-0.1.11:

    pip install alexafsm-0.1.11.whl


نصب پکیج tar.gz alexafsm-0.1.11:

    pip install alexafsm-0.1.11.tar.gz