معرفی شرکت ها


alethiometer-1.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ZC proxies calculation repo, altered from foresight package.
ویژگی مقدار
سیستم عامل -
نام فایل alethiometer-1.0.9
نام alethiometer
نسخه کتابخانه 1.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده ViolinSolo
ایمیل نویسنده i.violinsolo@gmail.com
آدرس صفحه اصلی https://github.com/iViolinSolo/zero-cost-proxies
آدرس اینترنتی https://pypi.org/project/alethiometer/
مجوز Apache Software License
<!-- * @Author: ViolinSolo * @Date: 2023-03-26 10:11:01 * @LastEditTime: 2023-04-29 10:48:36 * @LastEditors: ViolinSolo * @Description: Readme * @FilePath: /zero-cost-proxies/README.md --> # zero-cost-proxies Independent ZC proxies only for testing on it. Modified and simplified from [foresight repo](https://github.com/SamsungLabs/zero-cost-nas), fix some bugs in model output, remove some unwanted code snippets. Supported zc-metrics are: ``` ========================================================= = grad_norm, = =-------------------------------------------------------= = grasp, = =-------------------------------------------------------= = snip, = =-------------------------------------------------------= = synflow, = =-------------------------------------------------------= = nwot, (NASWOT) = = [nwot, nwot_Kmats] = =-------------------------------------------------------= = lnwot, (Layerwise NASWOT) = = [lnwot, lnwot_Kmats] = =-------------------------------------------------------= = nwot_relu, (original RELU based NASWOT metric) = = [nwot_relu, nwot_relu_Kmats] = =-------------------------------------------------------= = zen, = = Your network need have attribute fn: = = `forward_before_global_avg_pool(inputs)` = = to calculate zenas score = = (see sample code in tests/test_zc.py) = =-------------------------------------------------------= = tenas, = = must work in `gpu` env, = = might encouter bug on `cpu`. = = also contains metrics: = = ntk, = = lrn, = =-------------------------------------------------------= = zico, = = zico must use at least two batches of data, = = in order to calculate cross-batch (non-zero) std = ========================================================= ``` ## 1. Tests ImageNet16-120 cannot be automatically downloaded. Using script under `scripts/download_data.sh` to download: ```bash source scripts/download_data.sh nb201 ImageNet16-120 # do not use `bash`, use `source` instead ``` ## 2. Versions - V1.0.10 add `zico` metric, which calculates ZICO score. - V1.0.9 fix readme format, no code change. - V1.0.8 fix bug in `nwot_relu` for wrong for/backward fn register, fix bug in `zen` for missed necessary attribute check, add test sample for `zen` metric, fix bug in `zen` for return value have not .item() attribute, add `tenas` metric, which calculates TE-NAS score. (`tenas`, `ntk`, `lrn`) - V1.0.7 add `zen` metric, which calculates ZenNAS score. - V1.0.6 add original `naswot` implements based on RELU, can be calculated using metirc `nwot_relu`, also fix potential oom bug, and more reliable GPU memory cache removal code snippets. - V1.0.5 add `naswot, lnwot` into mats - V1.0.4 fix bugs in calculation, add more test codes. - V1.0.3 add shortcuts to import directly from package root directory. ## 3. Quick Bug Fix 1. if you encouther this error: `RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'` ```bash Traceback (most recent call last): File "/home/u2280887/GitHub/zero-cost-proxies/tests/test_zc.py", line 87, in <module> test_zc_proxies() File "/home/u2280887/GitHub/zero-cost-proxies/tests/test_zc.py", line 49, in test_zc_proxies results = calc_zc_metrics(metrics=mts, model=net, train_queue=train_loader, device=device, aggregate=True) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zc_proxy.py", line 115, in calc_zc_metrics mt_vals = calc_vals(net_orig=model, trainloader=train_queue, device=device, metric_names=metrics, loss_fn=loss_fn) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zc_proxy.py", line 101, in calc_vals raise e File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zc_proxy.py", line 73, in calc_vals val = M.calc_metric(mt_name, net_orig, device, inputs, targets, loss_fn=loss_fn, split_data=ds) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/__init__.py", line 42, in calc_metric return _metric_impls[name](net, device, *args, **kwargs) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/__init__.py", line 24, in metric_impl ret = func(net, *args, **kwargs, **impl_args) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 316, in compute_TENAS_score RN = compute_RN_score(net, inputs, targets, split_data, loss_fn, num_batch) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 201, in compute_RN_score num_linear_regions = float(lrc_model.forward_batch_sample()[0]) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 170, in forward_batch_sample return [LRCount.getLinearReginCount() for LRCount in self.LRCounts] File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 170, in <listcomp> return [LRCount.getLinearReginCount() for LRCount in self.LRCounts] File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 93, in getLinearReginCount self.calc_LR() File "/home/u2280887/miniconda3/envs/zc-alth/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 62, in calc_LR res = torch.matmul(self.activations.half(), (1-self.activations).T.half()) RuntimeError: "addmm_impl_cpu_" not implemented for 'Half' ``` please check your lib installation, we need gpu support for `torch.half()`, please check your cuda version and pytorch version, and reinstall pytorch with cuda support. It seem current cpu version of pytorch does not support `torch.half()`, even if we are using float32 not float16. 2. ....


نیازمندی

مقدار نام
>=2.10.0 h5py
>=1.18.4 numpy
>=4 Pillow


زبان مورد نیاز

مقدار نام
>=3.6.0 Python


نحوه نصب


نصب پکیج whl alethiometer-1.0.9:

    pip install alethiometer-1.0.9.whl


نصب پکیج tar.gz alethiometer-1.0.9:

    pip install alethiometer-1.0.9.tar.gz