معرفی شرکت ها


ale-py-0.8.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The Arcade Learning Environment (ALE) - a platform for AI research.
ویژگی مقدار
سیستم عامل -
نام فایل ale-py-0.8.1
نام ale-py
نسخه کتابخانه 0.8.1
نگهدارنده []
ایمیل نگهدارنده ['Jesse Farebrother <jfarebro@cs.mcgill.ca>']
نویسنده Marc G. Bellemare, Yavar Naddaf, Joel Veness, Michael Bowling
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/ale-py/
مجوز GPLv2
The Arcade Learning Environment <a href="#the-arcade-learning-environment"> <img alt="Arcade Learning Environment" align="right" src="docs/static/ale.svg" width=75 /> </a> =============================== [![Continuous Integration](https://github.com/mgbellemare/Arcade-Learning-Environment/actions/workflows/ci.yml/badge.svg)](https://github.com/mgbellemare/Arcade-Learning-Environment/actions/workflows/ci.yml) [![PyPI Version](https://img.shields.io/pypi/v/ale-py)](https://pypi.org/project/ale-py) **The Arcade Learning Environment (ALE) is a simple framework that allows researchers and hobbyists to develop AI agents for Atari 2600 games.** It is built on top of the Atari 2600 emulator [Stella](https://stella-emu.github.io) and separates the details of emulation from agent design. This [video](https://www.youtube.com/watch?v=nzUiEkasXZI) depicts over 50 games currently supported in the ALE. For an overview of our goals for the ALE read [The Arcade Learning Environment: An Evaluation Platform for General Agents](https://jair.org/index.php/jair/article/view/10819). If you use ALE in your research, we ask that you please cite this paper in reference to the environment. See the [Citing](#Citing) section for BibTeX entries. Features -------- - Object-oriented framework with support to add agents and games. - Emulation core uncoupled from rendering and sound generation modules for fast emulation with minimal library dependencies. - Automatic extraction of game score and end-of-game signal for more than 100 Atari 2600 games. - Multi-platform code (compiled and tested under macOS, Windows, and several Linux distributions). - Python bindings through [pybind11](https://github.com/pybind/pybind11). - Native support for OpenAI Gym. - Visualization tools. Quick Start =========== The ALE currently supports three different interfaces: C++, Python, and OpenAI Gym. Python ------ You simply need to install the `ale-py` package distributed via PyPI: ```shell pip install ale-py ``` Note: Make sure you're using an up to date version of `pip` or the install may fail. You can now import the ALE in your Python projects with ```python from ale_py import ALEInterface ale = ALEInterface() ``` ### ROM Management The ALE doesn't distribute ROMs but we do provide a couple tools for managing your ROMs. First is the command line tool `ale-import-roms`. You can simply specify a directory as the first argument to this tool and we'll import all supported ROMs by the ALE. ```shell ale-import-roms roms/ [SUPPORTED] breakout roms/breakout.bin [SUPPORTED] freeway roms/freeway.bin [NOT SUPPORTED] roms/custom.bin Imported 2/3 ROMs ``` Furthermore, Python packages can expose ROMs for discovery using the special `ale-py.roms` entry point. For more details check out the example [python-rom-package](./examples/python-rom-package). Once you've imported a supported ROM you can simply import the path from the `ale-py.roms` package and load the ROM in the ALE: ```py from ale_py.roms import Breakout ale.loadROM(Breakout) ``` ## OpenAI Gym Gym support is included in `ale-py`. Simply install the Python package using the instructions above. You can also install `gym[atari]` which also installs `ale-py` with Gym. As of Gym v0.20 and onwards all Atari environments are provided via `ale-py`. We do recommend using the new `v5` environments in the `ALE` namespace: ```py import gym env = gym.make('ALE/Breakout-v5') ``` The `v5` environments follow the latest methodology set out in [Revisiting the Arcade Learning Environment by Machado et al.](https://jair.org/index.php/jair/article/view/11182). The only major change difference from Gym's `AtariEnv` is that we'd recommend not using the `env.render()` method in favour of supplying the `render_mode` keyword argument during environment initialization. The `human` render mode will give you the advantage of: frame perfect rendering, audio support, and proper resolution scaling. For more information check out [docs/gym-interface.md](./docs/gym-interface.md). For more information on changes to the Atari environments in OpenAI Gym please check out [the following blog post](https://brosa.ca/blog/ale-release-v0.7). C++ --- The following instructions will assume you have a valid C++17 compiler and [`vcpkg`](https://github.com/microsoft/vcpkg) installed. We use CMake as a first class citizen, and you can use the ALE directly with any CMake project. To compile and install the ALE you can run ```sh mkdir build && cd build cmake ../ -DCMAKE_BUILD_TYPE=Release cmake --build . --target install ``` There are optional flags `-DSDL_SUPPORT=ON/OFF` to toggle SDL support (i.e., `display_screen` and `sound` support; `OFF` by default), `-DBUILD_CPP_LIB=ON/OFF` to build the `ale-lib` C++ target (`ON` by default), and `-DBUILD_PYTHON_LIB=ON/OFF` to build the pybind11 wrapper (`ON` by default). Finally, you can link agaisnt the ALE in your own CMake project as follows ```cmake find_package(ale REQUIRED) target_link_libraries(YourTarget ale::ale-lib) ``` Citing ====== If you use the ALE in your research, we ask that you please cite the following. *M. G. Bellemare, Y. Naddaf, J. Veness and M. Bowling. The Arcade Learning Environment: An Evaluation Platform for General Agents, Journal of Artificial Intelligence Research, Volume 47, pages 253-279, 2013.* In BibTeX format: ```bibtex @Article{bellemare13arcade, author = {{Bellemare}, M.~G. and {Naddaf}, Y. and {Veness}, J. and {Bowling}, M.}, title = {The Arcade Learning Environment: An Evaluation Platform for General Agents}, journal = {Journal of Artificial Intelligence Research}, year = "2013", month = "jun", volume = "47", pages = "253--279", } ``` If you use the ALE with sticky actions (flag ``repeat_action_probability``), or if you use the different game flavours (mode and difficulty switches), we ask you that you also cite the following: *M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. J. Hausknecht, M. Bowling. Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents, Journal of Artificial Intelligence Research, Volume 61, pages 523-562, 2018.* In BibTex format: ```bibtex @Article{machado18arcade, author = {Marlos C. Machado and Marc G. Bellemare and Erik Talvitie and Joel Veness and Matthew J. Hausknecht and Michael Bowling}, title = {Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents}, journal = {Journal of Artificial Intelligence Research}, volume = {61}, pages = {523--562}, year = {2018} } ```


نیازمندی

مقدار نام
- numpy
- importlib-resources
>=4.10.0 importlib-metadata
- typing-extensions
>=7.0 pytest
~=0.23 gym


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl ale-py-0.8.1:

    pip install ale-py-0.8.1.whl


نصب پکیج tar.gz ale-py-0.8.1:

    pip install ale-py-0.8.1.tar.gz