معرفی شرکت ها


akademy-0.1.46


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

akademy: A Reinforcement Learning Framework
ویژگی مقدار
سیستم عامل -
نام فایل akademy-0.1.46
نام akademy
نسخه کتابخانه 0.1.46
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Zack West
ایمیل نویسنده Zack West <alphazwest@gmail.com>
آدرس صفحه اصلی https://github.com/alphazwest/akademy
آدرس اینترنتی https://pypi.org/project/akademy/
مجوز BSD-3-Clause
# Akademy Akademy is a module containing composable object classes for developing reinforcement learning algorithms focused on quantitative trading and time-series forecasting. This module is a work-in-progress and should, at no time, be assumed to be designed well or be free of bugs. # Overview Akademy is designed using an `Agent`-`Environment` model such that `Agent`-class objects ingest information from `Environment`-class objects (`Env`), produce an `Action`, which is then applied to the `Environment` which results in a change in `State` and possible reward to offer feedback to the agent. *Note*: this module does not provide any training routines -- only the object class that can be used to support the implementation of custom training routines. # Getting Started To install `akademy` use the following command in the desired Python 3.7+ environment: `pip install akademy` Once installed, developers will have access to `Agent`, `TradeEnv`, and `Network` class objects in which to design Reinforcement Learning algorithms to train models. Sample training routine: ```python from akademy.models.envs import TradeEnv from akademy.models.agents import DQNAgent from akademy.common.utils import load_spy_daily # loads the dataset used during training data = load_spy_daily(count=2500) # load the Trading Environment env = TradeEnv( data=data, window=50, asset="spy", ) # load the agent to train agent = DQNAgent( action_count=env.action_space.n, state_shape=env.observation_space.shape ) # load user-defined training routine training_routine( agent=agent, env=env ) ``` ## Tests Unit testing can be run via the following command: `python -m unittest` For detailed information the `--verbose` flag can be used. For more detailed usage consult the `unittest` module documentation. ## Available Data This module comes with minimal data for Agents and Environments to train on. The current data available is listed below, along with sources for the most up-to-date versions as well: ### 1. S&P500 Location: `/data/SPY.CSV`\ Start: `1993-01-29`\ End: `2023-01-23`\ Total Rows: `7,454` (excludes header)\ Header: `Date,Open,High,Low,Close,Adj Close,Volume`\ Source: https://finance.yahoo.com/quote/SPY/history?p=SPY *note*: Any data can be used easily enough via conversion into a Pandas DataFrame object, but must contain information for `date` and pricing data for `open`, `high`, `low`, and `close` as well as `volume` such that each row has at least those 6 features or the latter 5 and an index representative of date. # Notes ## Gym vs. Gymnasium The `Gym` project by OpenAI has been sunset and now maintained as `Gymnasium` by the [Farama-Foundation](https://github.com/Farama-Foundation/Gymnasium). The `Env` classes present here make use of the newer `Gymnasium` package which, among other differences, produces an extra item in the `step` method indicating whether an environment has been truncated. [See here](https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/core.py#L63) ## PyTorch PyTorch requires some additional consideration for setup depending on use-case. Akademy uses an approach whereby CPU-based training and inferences are possible via parameterized function calls. However, GPU use (e.g. CUDA) requires local considerations. [See here] (https://pytorch.org/get-started/locally/) for a more in-depth discussion and guide. This module currently uses the 1.* version, though a 2.* version release is imminent and an upgrade to that version is planned.


نیازمندی

مقدار نام
==1.5.2 pandas
==1.13.1 torch
==0.27.0 gymnasium


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl akademy-0.1.46:

    pip install akademy-0.1.46.whl


نصب پکیج tar.gz akademy-0.1.46:

    pip install akademy-0.1.46.tar.gz