معرفی شرکت ها


aizynthfinder-3.6.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Retrosynthetic route finding using neural network guided Monte-Carlo tree search
ویژگی مقدار
سیستم عامل -
نام فایل aizynthfinder-3.6.0
نام aizynthfinder
نسخه کتابخانه 3.6.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Molecular AI group
ایمیل نویسنده samuel.genheden@astrazeneca.com
آدرس صفحه اصلی https://github.com/MolecularAI/aizynthfinder/
آدرس اینترنتی https://pypi.org/project/aizynthfinder/
مجوز MIT
# AiZynthFinder [![License](https://img.shields.io/github/license/MolecularAI/aizynthfinder)](https://github.com/MolecularAI/aizynthfinder/blob/master/LICENSE) [![Tests](https://github.com/MolecularAI/aizynthfinder/workflows/tests/badge.svg)](https://github.com/MolecularAI/aizynthfinder/actions?workflow=tests) [![codecov](https://codecov.io/gh/MolecularAI/aizynthfinder/branch/master/graph/badge.svg)](https://codecov.io/gh/MolecularAI/aizynthfinder) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/python/black) [![version](https://img.shields.io/github/v/release/MolecularAI/aizynthfinder)](https://github.com/MolecularAI/aizynthfinder/releases) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MolecularAI/aizynthfinder/blob/master/contrib/notebook.ipynb) AiZynthFinder is a tool for retrosynthetic planning. The algorithm is based on a Monte Carlo tree search that recursively breaks down a molecule to purchasable precursors. The tree search is guided by a policy that suggests possible precursors by utilizing a neural network trained on a library of known reaction templates. An introduction video can be found here: [https://youtu.be/r9Dsxm-mcgA](https://youtu.be/r9Dsxm-mcgA) ## Prerequisites Before you begin, ensure you have met the following requirements: * Linux, Windows or macOS platforms are supported - as long as the dependencies are supported on these platforms. * You have installed [anaconda](https://www.anaconda.com/) or [miniconda](https://docs.conda.io/en/latest/miniconda.html) with python 3.8 - 3.9 The tool has been developed on a Linux platform, but the software has been tested on Windows 10 and macOS Catalina. ## Installation ### For end-users First time, execute the following command in a console or an Anaconda prompt conda create "python>=3.8,<3.10" -n aizynth-env To install, activate the environment and install the package using pypi conda activate aizynth-env python -m pip install aizynthfinder[all] for a smaller package, without all the functionality, you can also type python -m pip install aizynthfinder ### For developers First clone the repository using Git. Then execute the following commands in the root of the repository conda env create -f env-dev.yml conda activate aizynth-dev poetry install -E all the `aizynthfinder` package is now installed in editable mode. ## Usage The tool will install the ``aizynthcli`` and ``aizynthapp`` tools as interfaces to the algorithm: ``` aizynthcli --config config.yml --smiles smiles.txt aizynthapp --config config.yml ``` Consult the documentation [here](https://molecularai.github.io/aizynthfinder/) for more information. To use the tool you need 1. A stock file 2. A trained rollout policy network (including the Keras model and the list of unique templates) 3. A trained filer policy network (optional) Such files can be downloaded from [figshare](https://figshare.com/articles/AiZynthFinder_a_fast_robust_and_flexible_open-source_software_for_retrosynthetic_planning/12334577) and [here](https://figshare.com/articles/dataset/A_quick_policy_to_filter_reactions_based_on_feasibility_in_AI-guided_retrosynthetic_planning/13280507) or they can be downloaded automatically using ``` download_public_data my_folder ``` where ``my_folder`` is the folder that you want download to. This will create a ``config.yml`` file that you can use with either ``aizynthcli`` or ``aizynthapp``. ## Development ### Testing Tests uses the ``pytest`` package, and is installed by `poetry` Run the tests using: pytest -v The full command run on the CI server is available through an `invoke` command invoke full-tests ### Documentation generation The documentation is generated by Sphinx from hand-written tutorials and docstrings The HTML documentation can be generated by invoke build-docs ## Contributing We welcome contributions, in the form of issues or pull requests. If you have a question or want to report a bug, please submit an issue. To contribute with code to the project, follow these steps: 1. Fork this repository. 2. Create a branch: `git checkout -b <branch_name>`. 3. Make your changes and commit them: `git commit -m '<commit_message>'` 4. Push to the remote branch: `git push` 5. Create the pull request. Please use ``black`` package for formatting, and follow ``pep8`` style guide. ## Contributors * [@SGenheden](https://www.github.com/SGenheden) * [@EBjerrum](https://www.github.com/EBjerrum) * [@A-Thakkar](https://www.github.com/A-Thakkar) * [@benteb](https://www.github.com/benteb) The contributors have limited time for support questions, but please do not hesitate to submit an issue (see above). ## License The software is licensed under the MIT license (see LICENSE file), and is free and provided as-is. ## References 1. Thakkar A, Kogej T, Reymond J-L, et al (2019) Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. Chem Sci. https://doi.org/10.1039/C9SC04944D 2. Genheden S, Thakkar A, Chadimova V, et al (2020) AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. J. Cheminf. https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00472-1 3. Genheden S, Engkvist O, Bjerrum E (2020) A Quick Policy to Filter Reactions Based on Feasibility in AI-Guided Retrosynthetic Planning. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.13280495.v1 4. Genheden S, Engkvist O, Bjerrum E (2021) Clustering of synthetic routes using tree edit distance. J. Chem. Inf. Model. 61:3899–3907 [https://doi.org/10.1021/acs.jcim.1c00232](https://doi.org/10.1021/acs.jcim.1c00232) 5. Genheden S, Engkvist O, Bjerrum E (2022) Fast prediction of distances between synthetic routes with deep learning. Mach. Learn. Sci. Technol. 3:015018 [https://doi.org/10.1088/2632-2153/ac4a91](https://doi.org/10.1088/2632-2153/ac4a91)


نیازمندی

مقدار نام
>=7.5.1,<8.0.0 ipywidgets
>=3.0.0,<4.0.0 jinja2
>=1.0.0,<2.0.0 jupyter
>=1.3.3,<2.0.0 jupytext
>=2.4,<3.0 networkx
>=8.2.0,<9.0.0 more-itertools
>=1.2.10,<2.0.0 deprecated
>=1.0.0,<2.0.0 pandas
>=9.0.0,<10.0.0 pillow
>=2.23.0,<3.0.0 requests
>=1.0.0,<2.0.0 rdchiral
>=2022.3.3,<2023.0.0 rdkit
>=3.6.1,<4.0.0 tables
>=2.8.0,<3.0.0 tensorflow
>=4.42.1,<5.0.0 tqdm
>=1.24.0,<2.0.0) grpcio
>=2.1.0,<3.0.0) tensorflow-serving-api
>=3.10.1,<4.0.0) pymongo
>=1.1.0,<2.0.0) route-distances
>=1.0,<2.0) scipy
>=3.0.0,<4.0.0) matplotlib
>=0.5.0,<0.6.0) timeout-decorator


زبان مورد نیاز

مقدار نام
>=3.8,<3.10 Python


نحوه نصب


نصب پکیج whl aizynthfinder-3.6.0:

    pip install aizynthfinder-3.6.0.whl


نصب پکیج tar.gz aizynthfinder-3.6.0:

    pip install aizynthfinder-3.6.0.tar.gz