معرفی شرکت ها


airr-1.4.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

AIRR Community Data Representation Standard reference library for antibody and TCR sequencing data.
ویژگی مقدار
سیستم عامل -
نام فایل airr-1.4.1
نام airr
نسخه کتابخانه 1.4.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده AIRR Community
ایمیل نویسنده -
آدرس صفحه اصلی http://docs.airr-community.org
آدرس اینترنتی https://pypi.org/project/airr/
مجوز CC BY 4.0
Installation ------------------------------------------------------------------------------ Install in the usual manner from PyPI:: > pip3 install airr --user Or from the `downloaded <https://github.com/airr-community/airr-standards>`__ source code directory:: > python3 setup.py install --user Quick Start ------------------------------------------------------------------------------ Deprecation Notice ^^^^^^^^^^^^^^^^^^^^ The ``load_repertoire``, ``write_repertoire``, and ``validate_repertoire`` functions have been deprecated for the new generic ``load_airr_data``, ``write_airr_data``, and ``validate_airr_data`` functions. These new functions are backwards compatible with the Repertoire metadata format but also support the new AIRR objects such as GermlineSet, RepertoireGroup, GenotypeSet, Cell and Clone. This new format is defined by the DataFile Schema, which describes a standard set of objects included in a file containing AIRR Data Model presentations. Currently, the AIRR DataFile does not completely support Rearrangement, so users should continue using AIRR TSV files and its specific functions. Also, the ``repertoire_template`` function has been deprecated for the ``Schema.template`` method, which can now be called on any AIRR Schema to create a blank object. Reading AIRR Data Files ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The ``airr`` package contains functions to read and write AIRR Data Model files. The file format is either YAML or JSON, and the package provides a light wrapper over the standard parsers. The file needs a ``json``, ``yaml``, or ``yml`` file extension so that the proper parser is utilized. All of the AIRR objects are loaded into memory at once and no streaming interface is provided:: import airr # Load the AIRR data data = airr.read_airr('input.airr.json') # loop through the repertoires for rep in data['Repertoire']: print(rep) Why are the AIRR objects, such as Repertoire, GermlineSet, and etc., in a list versus in a dictionary keyed by their identifier (e.g., ``repertoire_id``)? There are two primary reasons for this. First, the identifier might not have been assigned yet. Some systems might allow MiAIRR metadata to be entered but the identifier is assigned to that data later by another process. Without the identifier, the data could not be stored in a dictionary. Secondly, the list allows the data to have a default ordering. If you know that the data has a unique identifier then you can quickly create a dictionary object using a comprehension. For example, with repertoires:: rep_dict = { obj['repertoire_id'] : obj for obj in data['Repertoire'] } another example with germline sets:: germline_dict = { obj['germline_set_id'] : obj for obj in data['GermlineSet'] } Writing AIRR Data Files ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Writing an AIRR Data File is also a light wrapper over standard YAML or JSON parsers. Multiple AIRR objects, such as Repertoire, GermlineSet, and etc., can be written together into the same file. In this example, we use the ``airr`` library ``template`` method to create some blank Repertoire objects, and write them to a file. As with the read function, the complete list of repertoires are written at once, there is no streaming interface:: import airr # Create some blank repertoire objects in a list data = { 'Repertoire': [] } for i in range(5): data['Repertoire'].append(airr.schema.RepertoireSchema.template()) # Write the AIRR Data airr.write_airr('output.airr.json', data) Reading AIRR Rearrangement TSV files ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The ``airr`` package contains functions to read and write AIRR Rearrangement TSV files as either iterables or pandas data frames. The usage is straightforward, as the file format is a typical tab delimited file, but the package performs some additional validation and type conversion beyond using a standard CSV reader:: import airr # Create an iteratable that returns a dictionary for each row reader = airr.read_rearrangement('input.tsv') for row in reader: print(row) # Load the entire file into a pandas data frame df = airr.load_rearrangement('input.tsv') Writing AIRR Rearrangement TSV files ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Similar to the read operations, write functions are provided for either creating a writer class to perform row-wise output or writing the entire contents of a pandas data frame to a file. Again, usage is straightforward with the ``airr`` output functions simply performing some type conversion and field ordering operations:: import airr # Create a writer class for iterative row output writer = airr.create_rearrangement('output.tsv') for row in reader: writer.write(row) # Write an entire pandas data frame to a file airr.dump_rearrangement(df, 'file.tsv') By default, ``create_rearrangement`` will only write the ``required`` fields in the output file. Additional fields can be included in the output file by providing the ``fields`` parameter with an array of additional field names:: # Specify additional fields in the output fields = ['new_calc', 'another_field'] writer = airr.create_rearrangement('output.tsv', fields=fields) A common operation is to read an AIRR rearrangement file, and then write an AIRR rearrangement file with additional fields in it while keeping all of the existing fields from the original file. The ``derive_rearrangement`` function provides this capability:: import airr # Read rearrangement data and write new file with additional fields reader = airr.read_rearrangement('input.tsv') fields = ['new_calc'] writer = airr.derive_rearrangement('output.tsv', 'input.tsv', fields=fields) for row in reader: row['new_calc'] = 'a value' writer.write(row) Validating AIRR data files ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The ``airr`` package can validate AIRR Data Model JSON/YAML files and Rearrangement TSV files to ensure that they contain all required fields and that the fields types match the AIRR Schema. This can be done using the ``airr-tools`` command line program or the validate functions in the library can be called:: # Validate a rearrangement TSV file airr-tools validate rearrangement -a input.tsv # Validate an AIRR DataFile airr-tools validate airr -a input.airr.json Combining Repertoire metadata and Rearrangement files ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The ``airr`` package does not currently keep track of which AIRR Data Model files are associated with which Rearrangement TSV files, though there is ongoing work to define a standardized manifest, so users will need to handle those associations themselves. However, in the data, AIRR identifier fields, such as ``repertoire_id``, form the link between objects in the AIRR Data Model. The typical usage is that a program is going to perform some computation on the Rearrangements, and it needs access to the Repertoire metadata as part of the computation logic. This example code shows the basic framework for doing that, in this case doing gender specific computation:: import airr # Load AIRR data containing repertoires data = airr.read_airr('input.airr.json') # Put repertoires in dictionary keyed by repertoire_id rep_dict = { obj['repertoire_id'] : obj for obj in data['Repertoire'] } # Create an iteratable for rearrangement data reader = airr.read_rearrangement('input.tsv') for row in reader: # get repertoire metadata with this rearrangement rep = rep_dict[row['repertoire_id']] # check the gender if rep['subject']['sex'] == 'male': # do male specific computation elif rep['subject']['sex'] == 'female': # do female specific computation else: # do other specific computation


نحوه نصب


نصب پکیج whl airr-1.4.1:

    pip install airr-1.4.1.whl


نصب پکیج tar.gz airr-1.4.1:

    pip install airr-1.4.1.tar.gz