معرفی شرکت ها


airflow-provider-anomaly-detection-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An airflow provider for anomaly detection.
ویژگی مقدار
سیستم عامل -
نام فایل airflow-provider-anomaly-detection-0.0.9
نام airflow-provider-anomaly-detection
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده andrewm4894 <andrewm4894@gmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/airflow-provider-anomaly-detection/
مجوز -
# Anomaly Detection with Apache Airflow Painless anomaly detection (using [PyOD](https://github.com/yzhao062/pyod)) with [Apache Airflow](https://airflow.apache.org/) via this community Airflow [Provider](https://airflow.apache.org/docs/apache-airflow-providers/#provider-packages) package. How it works in a nutshell: 1. Create and express your metrics via SQL queries. 1. Some YAML configuration fun. 1. Receive useful alerts when metrics look anomalous. ## Example Alert Example output of an alert. Horizontal bar chart used to show metric values over time. Smoothed anomaly score is shown as a `%` and any flagged anomalies are marked with `*`. ### Alert Text (ascii art yay!) ``` 🔥 [some_metric_last1h] looks anomalous (2023-01-25 16:00:00) 🔥 ``` ``` some_metric_last1h (2023-01-24 15:30:00 to 2023-01-25 16:00:00) t=0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,742.00 72% 2023-01-25 16:00:00 t=-1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3,165.00 * 81% 2023-01-25 15:30:00 t=-2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3,448.00 * 95% 2023-01-25 15:15:00 t=-3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3,441.00 76% 2023-01-25 15:00:00 t=-4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,475.00 72% 2023-01-25 14:30:00 t=-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 1,833.00 72% 2023-01-25 14:15:00 t=-6 ~~~~~~~~~~~~~~~~~~~~ 1,406.00 72% 2023-01-25 14:00:00 t=-7 ~~~~~~~~~~~~~~~~~~~ 1,327.00 * 89% 2023-01-25 13:30:00 t=-8 ~~~~~~~~~~~~~~~~~~~ 1,363.00 78% 2023-01-25 13:15:00 t=-9 ~~~~~~~~~~~~~~~~~~~~~~~~ 1,656.00 66% 2023-01-25 13:00:00 t=-10 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,133.00 51% 2023-01-25 12:30:00 t=-11 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,392.00 40% 2023-01-25 12:15:00 t=-12 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,509.00 41% 2023-01-25 12:00:00 t=-13 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,729.00 42% 2023-01-25 11:30:00 t=-14 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,696.00 44% 2023-01-25 11:15:00 t=-15 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,618.00 41% 2023-01-25 11:00:00 t=-16 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,390.00 39% 2023-01-25 10:30:00 t=-17 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,601.00 27% 2023-01-24 20:00:00 t=-18 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,833.00 25% 2023-01-24 17:30:00 t=-19 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,910.00 28% 2023-01-24 17:15:00 t=-20 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,757.00 22% 2023-01-24 17:00:00 t=-21 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,696.00 34% 2023-01-24 16:30:00 t=-22 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,651.00 37% 2023-01-24 16:15:00 t=-23 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,797.00 39% 2023-01-24 16:00:00 t=-24 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2,739.00 40% 2023-01-24 15:30:00 ``` Below is the sql to pull the metric in question for investigation (this is included in the alert for convenience). ```sql select * from `metrics.metrics` m join `metrics.metrics_scored` s on m.metric_name = s.metric_name and m.metric_timestamp = s.metric_timestamp where m.metric_name = 'some_metric_last1h' order by m.metric_timestamp desc ``` ### Alert Chart A slightly more fancy chart is also attached to alert emails. The top line graph shows the metric values over time. The bottom line graph shows the smoothed anomaly score over time along with the alert status for any flagged anomalies where the smoothed anomaly score passes the threshold. ![alert-chart-example](https://raw.githubusercontent.com/andrewm4894/airflow-provider-anomaly-detection/main/img/alert-chart-example.png) ## Getting Started Check out the [example dag](https://github.com/andrewm4894/airflow-provider-anomaly-detection/tree/main/airflow_anomaly_detection/example_dags/anomaly-detection-dag/) to get started. ### Prerequisites * Currently only Google BiqQuery is supported as a data source. The plan is to add Snowflake next and then probably Redshift. PR's to add other data sources are very welcome (some refactoring probably needed). * Requirements are listed in [requirements.txt](requirements.txt). ### Installation Install from [PyPI](https://pypi.org/project/airflow-provider-anomaly-detection/) as usual. ```bash pip install airflow-provider-anomaly-detection ``` ### Configuration See the example configuration files in the [example dag](https://github.com/andrewm4894/airflow-provider-anomaly-detection/tree/main/airflow_anomaly_detection/example_dags/anomaly-detection-dag/config/) folder. You can use a `defaults.yaml` or specific `<metric-batch>.yaml` for each metric batch if needed. ### Docker YOu can use the docker compose file to spin up an airflow instance with the provider installed and the example dag available. This is useful for quickly trying it out locally. ```bash docker-compose up ```


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl airflow-provider-anomaly-detection-0.0.9:

    pip install airflow-provider-anomaly-detection-0.0.9.whl


نصب پکیج tar.gz airflow-provider-anomaly-detection-0.0.9:

    pip install airflow-provider-anomaly-detection-0.0.9.tar.gz