معرفی شرکت ها


aiopype-0.1.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

AioPype - Flow based programming with asyncio
ویژگی مقدار
سیستم عامل -
نام فایل aiopype-0.1.4
نام aiopype
نسخه کتابخانه 0.1.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jorge Alpedrinha Ramos
ایمیل نویسنده python@uphold.com
آدرس صفحه اصلی https://www.github.com/uphold/aiopype/
آدرس اینترنتی https://pypi.org/project/aiopype/
مجوز LICENSE
aiopype ======= Python asynchronous data pipelines **aiopype** allows running continuous data pipelines reliably with a plain simple approach to their development. **Aiopype** creates a centralized message handler to allow every processor to work as an independent non-blocking message producer/consumer. **Aiopype** has 4 main concepts: - Flow - Manager - Processor - Message Handler Flow ---- The Flow is **aiopype**'s main component. A flow is the entrypoint for reliability running pipeline managers. ``Flow`` is responsible for: - Starting all registered managers - Handling manager failures - Reporting errors - Restarting failed managers Manager ------- The manager is responsible for registering a data pipeline from top to bottom. This means it must register a source and connect it with it's consumers, until the pipeline finally outputs. Processor --------- A processor is a message consumer/producer. Sources ~~~~~~~ Sources are special cases of processors. Their special characteristic is that they can run forever, and are the starting point of any pipeline. Examples of sources may be: - A ``REST API`` poller - An ``Websocket`` client - A ``Cron`` job Message handler --------------- The message handler is the central piece that allows **aiopype** to scale. A Flow will start one or more Sources as the starting point for each registered Manager. Once a Source produces an event, a message will be triggered and the handler will identify and fire the corresponding handlers. There are two available message handlers: - SyncProtocol - AsyncProtocol SyncProtocol ------------ The synchronous event handler is, as its name suggests, synchronous, meaning that once the source emits a message, it must be handled until the end of the pipeline and the source can proceed with it's normal behavior. This is good for development purposes but fails to meet the asynchronous event driven pattern required to allowing component isolation. AsyncProtocol ------------- The main difference between SyncProtocol and AsyncProtocol is that the latter uses a decoupled event loop to assess if there are new messages in the queue for processing, whilst the first simply starts processing received messages instantaneously. This allows total isolation of processors. Example ======= Apple stock processor. Source ------ Our source will be ``Yahoo Finance`` for gathering data from ``AAPL`` ticker price. We'll use **aiopype** ``RestSource`` as a base class. .. code:: py from aiopype.sources import RestSource class YahooRestSource(RestSource): """ Yahoo REST API source. """ def __init__(self, name, handler, symbol): super().__init__( name, handler, 'http://finance.yahoo.com/webservice/v1/symbols/{}/quote?format=json&view=detail'.format(symbol), { 'exception_threshold': 10, 'request_interval': 30 } ) Processor --------- Our sample processor will simply extract the price from the returned json. .. code:: py from aiopype import Processor class HandleRawData(Processor): def handle(self, data, time): self.emit('price', time, data['list']['resources'][0]['resource']['fields']['price']) Output ------ Our output processor will write price data onto a CSV File. .. code:: py import csv class CSVOutput(Processor): def __init__(self, name, handler, filename): super().__init__(name, handler) self.filename = filename with open(self.filename, 'w', newline = '') as csvfile: writer = csv.writer(csvfile, delimiter = ';') writer.writerow(['time', 'price']) def write(self, time, price): with open(self.filename, 'w', newline = '') as csvfile: writer = csv.writer(csvfile, delimiter = ';') writer.writerow([time, price]) Manager ------- The manager will instantiate ``Source``, ``Processor`` and ``Output``. It will connect ``Source``'s ``data`` event to ``Processor.handle`` handler and ``Processor``'s ``price`` event to ``Output.write`` handler. This will be our data pipeline. .. code:: py from aiopype import Manager class YahooManager(Manager): name = 'yahoo_apple' def __init__(self, handler): super().__init__(handler) self.processor = HandleRawData(self.build_processor_name('processor'), self.handler) self.source = YahooRestSource(self.build_processor_name('source'), self.handler, 'AAPL') self.writer = CSVOutput(self.build_processor_name('writer'), self.handler, 'yahoo_appl.csv') self.source.on('data', self.processor.handle) self.processor.on('price', self.writer.write) Flow ---- Our flow config will have the ``yahoo_apple`` manager only. .. code:: py from aiopype import AsyncFlow class FlowConfig(object): FLOWS = ['yahoo_apple'] dataflow = AsyncFlow(FlowConfig()) Main method: ------------ Will simply start the dataflow. .. code:: py if __name__ == "__main__": dataflow.start() Running the example ------------------- Compile all the above code in a file called ``example.py`` and run: .. code:: sh python example.py Clusters ======== WIP: ---- This decentralized mechanism makes distributed pipelines a possibility, if we have coordination between nodes. Changelog --------- 0.1.4 / 2016-07-14 ~~~~~~~~~~~~~~~~~~ - `#10 <https://github.com/uphold/aiopype/pull/10>`__ Avoid unfinished flows (@jAlpedrinha) 0.1.3 / 2016-07-11 ~~~~~~~~~~~~~~~~~~ - `#8 <https://github.com/uphold/aiopype/pull/8>`__ Fix AsyncProtocol termination condition (@jAlpedrinha) 0.1.2 / 2016-07-06 ~~~~~~~~~~~~~~~~~~ - `#6 <https://github.com/uphold/aiopype/pull/6>`__ Handle exceptions from async protocol listener (@jAlpedrinha) 0.1.1 / 2016-07-05 ~~~~~~~~~~~~~~~~~~ - `#4 <https://github.com/uphold/aiopype/pull/4>`__ Avoid failure on pusherclient disconnection (@jAlpedrinha) 0.1.0 / 2016-07-05 ~~~~~~~~~~~~~~~~~~ - `#1 <https://github.com/uphold/aiopype/pull/1>`__ Add flow manager and processors (@jAlpedrinha)


نحوه نصب


نصب پکیج whl aiopype-0.1.4:

    pip install aiopype-0.1.4.whl


نصب پکیج tar.gz aiopype-0.1.4:

    pip install aiopype-0.1.4.tar.gz