معرفی شرکت ها


aioprocessing-2.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python 3.5+ library that integrates the multiprocessing module with asyncio.
ویژگی مقدار
سیستم عامل -
نام فایل aioprocessing-2.0.1
نام aioprocessing
نسخه کتابخانه 2.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Dan O'Reilly <oreilldf@gmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/aioprocessing/
مجوز -
aioprocessing ============= [![Build Status](https://github.com/dano/aioprocessing/workflows/aioprocessing%20tests/badge.svg?branch=master)](https://github.com/dano/aioprocessing/actions) `aioprocessing` provides asynchronous, [`asyncio`](https://docs.python.org/3/library/asyncio.html) compatible, coroutine versions of many blocking instance methods on objects in the [`multiprocessing`](https://docs.python.org/3/library/multiprocessing.html) library. To use [`dill`](https://pypi.org/project/dill) for universal pickling, install using `pip install aioprocessing[dill]`. Here's an example demonstrating the `aioprocessing` versions of `Event`, `Queue`, and `Lock`: ```python import time import asyncio import aioprocessing def func(queue, event, lock, items): """ Demo worker function. This worker function runs in its own process, and uses normal blocking calls to aioprocessing objects, exactly the way you would use oridinary multiprocessing objects. """ with lock: event.set() for item in items: time.sleep(3) queue.put(item+5) queue.close() async def example(queue, event, lock): l = [1,2,3,4,5] p = aioprocessing.AioProcess(target=func, args=(queue, event, lock, l)) p.start() while True: result = await queue.coro_get() if result is None: break print("Got result {}".format(result)) await p.coro_join() async def example2(queue, event, lock): await event.coro_wait() async with lock: await queue.coro_put(78) await queue.coro_put(None) # Shut down the worker if __name__ == "__main__": loop = asyncio.get_event_loop() queue = aioprocessing.AioQueue() lock = aioprocessing.AioLock() event = aioprocessing.AioEvent() tasks = [ asyncio.ensure_future(example(queue, event, lock)), asyncio.ensure_future(example2(queue, event, lock)), ] loop.run_until_complete(asyncio.wait(tasks)) loop.close() ``` The aioprocessing objects can be used just like their multiprocessing equivalents - as they are in `func` above - but they can also be seamlessly used inside of `asyncio` coroutines, without ever blocking the event loop. What's new ---------- `v2.0.1` - Fixed a bug that kept the `AioBarrier` and `AioEvent` proxies returned from `AioManager` instances from working. Thanks to Giorgos Apostolopoulos for the fix. `v2.0.0` - Add support for universal pickling using [`dill`](https://github.com/uqfoundation/dill), installable with `pip install aioprocessing[dill]`. The library will now attempt to import [`multiprocess`](https://github.com/uqfoundation/multiprocess), falling back to stdlib `multiprocessing`. Force stdlib behaviour by setting a non-empty environment variable `AIOPROCESSING_DILL_DISABLED=1`. This can be used to avoid [errors](https://github.com/dano/aioprocessing/pull/36#discussion_r631178933) when attempting to combine `aioprocessing[dill]` with stdlib `multiprocessing` based objects like `concurrent.futures.ProcessPoolExecutor`. How does it work? ----------------- In most cases, this library makes blocking calls to `multiprocessing` methods asynchronous by executing the call in a [`ThreadPoolExecutor`](https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor), using [`asyncio.run_in_executor()`](https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.run_in_executor). It does *not* re-implement multiprocessing using asynchronous I/O. This means there is extra overhead added when you use `aioprocessing` objects instead of `multiprocessing` objects, because each one is generally introducing a `ThreadPoolExecutor` containing at least one [`threading.Thread`](https://docs.python.org/2/library/threading.html#thread-objects). It also means that all the normal risks you get when you mix threads with fork apply here, too (See http://bugs.python.org/issue6721 for more info). The one exception to this is `aioprocessing.AioPool`, which makes use of the existing `callback` and `error_callback` keyword arguments in the various [`Pool.*_async`](https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool.apply_async) methods to run them as `asyncio` coroutines. Note that `multiprocessing.Pool` is actually using threads internally, so the thread/fork mixing caveat still applies. Each `multiprocessing` class is replaced by an equivalent `aioprocessing` class, distinguished by the `Aio` prefix. So, `Pool` becomes `AioPool`, etc. All methods that could block on I/O also have a coroutine version that can be used with `asyncio`. For example, `multiprocessing.Lock.acquire()` can be replaced with `aioprocessing.AioLock.coro_acquire()`. You can pass an `asyncio` EventLoop object to any `coro_*` method using the `loop` keyword argument. For example, `lock.coro_acquire(loop=my_loop)`. Note that you can also use the `aioprocessing` synchronization primitives as replacements for their equivalent `threading` primitives, in single-process, multi-threaded programs that use `asyncio`. What parts of multiprocessing are supported? -------------------------------------------- Most of them! All methods that could do blocking I/O in the following objects have equivalent versions in `aioprocessing` that extend the `multiprocessing` versions by adding coroutine versions of all the blocking methods. - `Pool` - `Process` - `Pipe` - `Lock` - `RLock` - `Semaphore` - `BoundedSemaphore` - `Event` - `Condition` - `Barrier` - `connection.Connection` - `connection.Listener` - `connection.Client` - `Queue` - `JoinableQueue` - `SimpleQueue` - All `managers.SyncManager` `Proxy` versions of the items above (`SyncManager.Queue`, `SyncManager.Lock()`, etc.). What versions of Python are compatible? --------------------------------------- `aioprocessing` will work out of the box on Python 3.5+. Gotchas ------- Keep in mind that, while the API exposes coroutines for interacting with `multiprocessing` APIs, internally they are almost always being delegated to a `ThreadPoolExecutor`, this means the caveats that apply with using `ThreadPoolExecutor` with `asyncio` apply: namely, you won't be able to cancel any of the coroutines, because the work being done in the worker thread can't be interrupted.


نیازمندی

مقدار نام
- multiprocess


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl aioprocessing-2.0.1:

    pip install aioprocessing-2.0.1.whl


نصب پکیج tar.gz aioprocessing-2.0.1:

    pip install aioprocessing-2.0.1.tar.gz