# aiochclient
[](https://badge.fury.io/py/aiochclient)
[](https://app.travis-ci.com/maximdanilchenko/aiochclient)
[](https://aiochclient.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/gh/maximdanilchenko/aiochclient)
[](https://github.com/ambv/black)
An async http(s) ClickHouse client for python 3.6+ supporting type
conversion in both directions, streaming, lazy decoding on select queries, and a
fully typed interface.
## Table of Contents
- [Installation](#installation)
- [Quick Start](#quick-start)
- [Documentation](#documentation)
- [Type Conversion](#type-conversion)
- [Connection Pool Settings](#connection-pool-settings)
- [Notes on Speed](#notes-on-speed)
## Installation
You can use it with either
[aiohttp](https://github.com/aio-libs/aiohttp) or
[httpx](https://github.com/encode/httpx) http connectors.
To use with `aiohttp` install it with command:
```
> pip install aiochclient[aiohttp]
```
Or `aiochclient[aiohttp-speedups]` to install with extra speedups.
To use with `httpx` install it with command:
```
> pip install aiochclient[httpx]
```
Or `aiochclient[httpx-speedups]` to install with extra speedups.
Installing with `[*-speedups]` adds the following:
- [cChardet](https://pypi.python.org/pypi/cchardet) for `aiohttp` speedup
- [aiodns](https://pypi.python.org/pypi/aiodns) for `aiohttp` speedup
- [ciso8601](https://github.com/closeio/ciso8601) for ultra-fast datetime
parsing while decoding data from ClickHouse for `aiohttp` and `httpx`.
Additionally the installation process attempts to use Cython for a speed boost
(roughly 30% faster).
## Quick Start
### Connecting to ClickHouse
`aiochclient` needs `aiohttp.ClientSession` or `httpx.AsyncClient` to connect to ClickHouse:
```python
from aiochclient import ChClient
from aiohttp import ClientSession
async def main():
async with ClientSession() as s:
client = ChClient(s)
assert await client.is_alive() # returns True if connection is Ok
```
### Querying the database
```python
await client.execute(
"CREATE TABLE t (a UInt8, b Tuple(Date, Nullable(Float32))) ENGINE = Memory"
)
```
For INSERT queries you can pass values as `*args`. Values should be
iterables:
```python
await client.execute(
"INSERT INTO t VALUES",
(1, (dt.date(2018, 9, 7), None)),
(2, (dt.date(2018, 9, 8), 3.14)),
)
```
For fetching all rows at once use the
[`fetch`](https://aiochclient.readthedocs.io/en/latest/api.html#aiochclient.ChClient.fetch)
method:
```python
all_rows = await client.fetch("SELECT * FROM t")
```
For fetching first row from result use the
[`fetchrow`](https://aiochclient.readthedocs.io/en/latest/api.html#aiochclient.ChClient.fetchrow)
method:
```python
row = await client.fetchrow("SELECT * FROM t WHERE a=1")
assert row[0] == 1
assert row["b"] == (dt.date(2018, 9, 7), None)
```
You can also use
[`fetchval`](https://aiochclient.readthedocs.io/en/latest/api.html#aiochclient.ChClient.fetchval)
method, which returns first value of the first row from query result:
```python
val = await client.fetchval("SELECT b FROM t WHERE a=2")
assert val == (dt.date(2018, 9, 8), 3.14)
```
With async iteration on the query results stream you can fetch multiple
rows without loading them all into memory at once:
```python
async for row in client.iterate(
"SELECT number, number*2 FROM system.numbers LIMIT 10000"
):
assert row[0] * 2 == row[1]
```
Use `fetch`/`fetchrow`/`fetchval`/`iterate` for SELECT queries and `execute` or
any of last for INSERT and all another queries.
### Working with query results
All fetch queries return rows as lightweight, memory efficient objects. _Before
v`1.0.0` rows were only returned as tuples._ All rows have a full mapping interface, where you can
get fields by names or indexes:
```python
row = await client.fetchrow("SELECT a, b FROM t WHERE a=1")
assert row["a"] == 1
assert row[0] == 1
assert row[:] == (1, (dt.date(2018, 9, 8), 3.14))
assert list(row.keys()) == ["a", "b"]
assert list(row.values()) == [1, (dt.date(2018, 9, 8), 3.14)]
```
## Documentation
To check out the [api docs](https://aiochclient.readthedocs.io/en/latest/api.html),
visit the [readthedocs site.](https://aiochclient.readthedocs.io/en/latest/).
## Type Conversion
`aiochclient` automatically converts types from ClickHouse to python types and
vice-versa.
| ClickHouse type | Python type |
|:----------------|:------------|
| `UInt8` | `int` |
| `UInt16` | `int` |
| `UInt32` | `int` |
| `UInt64` | `int` |
| `Int8` | `int` |
| `Int16` | `int` |
| `Int32` | `int` |
| `Int64` | `int` |
| `Float32` | `float` |
| `Float64` | `float` |
| `String` | `str` |
| `FixedString` | `str` |
| `Enum8` | `str` |
| `Enum16` | `str` |
| `Date` | `datetime.date` |
| `DateTime` | `datetime.datetime` |
| `DateTime64` | `datetime.datetime` |
| `Decimal` | `decimal.Decimal` |
| `Decimal32` | `decimal.Decimal` |
| `Decimal64` | `decimal.Decimal` |
| `Decimal128` | `decimal.Decimal` |
| `IPv4` | `ipaddress.IPv4Address` |
| `IPv6` | `ipaddress.IPv6Address` |
| `UUID` | `uuid.UUID` |
| `Nothing` | `None` |
| `Tuple(T1, T2, ...)` | `Tuple[T1, T2, ...]` |
| `Array(T)` | `List[T]` |
| `Nullable(T)` | `None` or `T` |
| `LowCardinality(T)` | `T` |
## Connection Pool Settings
`aiochclient` uses the
[aiohttp.TCPConnector](https://docs.aiohttp.org/en/stable/client_advanced.html#limiting-connection-pool-size)
to determine pool size. By default, the pool limit is 100 open connections.
## Notes on Speed
It's highly recommended using `uvloop` and installing `aiochclient` with
speedups for the sake of speed. Some recent benchmarks on our
machines without parallelization:
- 180k-220k rows/sec on SELECT
- 50k-80k rows/sec on INSERT
_Note: these benchmarks are system dependent_