معرفی شرکت ها


ainshamsflow-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A keras inspired deep learning framework.
ویژگی مقدار
سیستم عامل -
نام فایل ainshamsflow-0.1.0
نام ainshamsflow
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Pierre Nabil
ایمیل نویسنده pierre.nabil.attya@gmail.com
آدرس صفحه اصلی https://github.com/PierreNabil/AinShamsFlow
آدرس اینترنتی https://pypi.org/project/ainshamsflow/
مجوز MIT
# AinShamsFlow 4th CSE Neural Networks Project. ![asf_logo](/images/asf_logo.png) ## Contents: * [Project Description](#Project-Description) * [Project Structure](#Project-Structure) * [Install](#Install) * [Usage](#Usage) * [Team Members](#Team-Members) * [Todo](#Todo) ## Project Description: AinShamsFlow (asf) is a Deep Learning Framework built by our [Team](#Team-Members) from Ain Shams University during December 2020 - January 2021. The Design and Interface is inspired heavily from Keras and TensorFlow. However, we only implement everything from scratch using only simple libraries such as numpy and matplotlib. ## Project Structure: The Design of all parts can be seen in the following UML Diagram. ![UML Diagram of the Project](/images/UML%20Class%20Diagram.png) This is how the Design Structure should work in our Framework. ![Desgin Structure](/images/Design%20Structure.png) ## Install: You can install the latest available version as follows: ```shell $ pip install ainshamsflow ``` ## Usage: you start using this project by importing the package as follows: ```python >>> import ainshamsflow as asf ``` then you can start creating a model: ```python >>> model = asf.models.Sequential([ ... asf.layers.Dense(300, activation="relu"), ... asf.layers.Dense(100, activation="relu"), ... asf.layers.Dense( 10, activation="softmax") ... ], input_shape=(784,), name="my_model") >>> model.print_summary() ``` then compile and train the model: ```python >>> model.compile( ... optimizer=asf.optimizers.SGD(lr=0.01), ... loss='sparsecategoricalcrossentropy', ... metrics=['accuracy'] ... ) >>> history = model.fit(X_train, y_train, epochs=100) ``` finally you can evaluate, predict and show training statistics: ```python >>> history.show() >>> model.evaluate(X_valid, y_valid) >>> y_pred = model.predict(X_test) ``` A more elaborate example usage can be found in [main.py](/main.py) or check out this [demo notebook](https://colab.research.google.com/drive/1sqEeUUkG3bTplhlLb73QCGUbaubX2aXi?usp=sharing). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg) ](https://colab.research.google.com/drive/1sqEeUUkG3bTplhlLb73QCGUbaubX2aXi?usp=sharing) ## Team Members: * [Pierre Nabil](https://github.com/PierreNabil) * [Ahmed Taha](https://github.com/atf01) * [Girgis Micheal](https://github.com/girgismicheal) * [Hazzem Mohammed](https://github.com/hazzum) * [Ibrahim Shoukry](https://github.com/IbrahimShoukry512) * [John Bahaa](https://github.com/John-Bahaa) * [Michael Magdy](https://github.com/Michael-M-Mike) * [Ziad Tarek](https://github.com/ziadtarekk) ## Todo: ### Framework Design: - [x] A Data Module to read and process datasets. - [x] Dataset - [x] \_\_init\_\_() - [x] \_\_bool\_\_() - [x] \_\_len\_\_() - [x] \_\_iter\_\_() - [x] \_\_next\_\_() - [x] apply() - [x] numpy() - [x] batch() - [x] cardinality() - [x] concatenate() - [x] copy() - [x] enumerate() - [x] filter() - [x] map() - [x] range() - [x] shuffle() - [x] skip() - [x] split() - [x] take() - [x] unbatch() - [x] add_data() - [x] add_targets() - [x] normalize() - [x] ImageDataGenerator - [x] \_\_init\_\_() - [x] flow_from_directory() - [x] A NN Module to design different architectures. - [x] Activation Functions - [x] Linear - [x] Sigmoid - [x] Hard Sigmoid - [x] Tanh - [x] Hard Tanh - [x] ReLU - [x] LeakyReLU - [x] ELU - [x] SELU - [x] Softmax - [x] Softplus - [x] Softsign - [x] Swish - [x] Layers - DNN Layers: - [x] Dense - [x] BatchNorm - [x] Dropout - CNN Layers 1D: (optional) - [x] Conv - [x] Pool (Avg and Max) - [x] GlobalPool (Avg and Max) - [x] Upsample - CNN Layers 2D: - [x] Conv - [x] Pool (Avg and Max) - [x] FastConv - [x] FastPool (Avg and Max) - [x] GlobalPool (Avg and Max) - [x] Upsample - CNN Layers 3D: (optional) - [x] Conv - [x] Pool (Avg and Max) - [x] GlobalPool (Avg and Max) - [x] Upsample - Other Extra Functionality: - [x] Flatten - [x] Activation - [x] Reshape - [x] Initializers - [x] Constant - [x] Uniform - [x] Normal - [x] Identity - [x] Losses - [x] MSE (Mean Squared Error) - [x] MAE (Mean Absolute Error) - [x] MAPE (Mean Absolute Percentage Error) - [x] BinaryCrossentropy - [x] CategoricalCrossentropy - [x] SparseCategoricalCrossentropy - [x] HuberLoss - [x] LogLossLinearActivation - [x] LogLossSigmoidActivation - [x] PerceptronCriterionLoss - [x] SvmHingeLoss - [x] Evaluation Metrics - [x] Accuracy - [x] TP (True Positives) - [x] TN (True Negatives) - [x] FP (False Positives) - [x] FN (False Negatives) - [x] Precision - [x] Recall - [x] F1Score - [x] Regularizers - [x] L1 - [x] L2 - [x] L1_L2 - [x] Optimization Modules for training - [x] SGD - [x] Momentum - [x] AdaGrad - [x] RMSProp - [x] AdaDelta - [x] Adam - [x] A Visualization Modules to track the training and testing processes - [x] History Class for showing training statistics - [x] ```verbose``` parameter in training - [x] live plotting of training statistics - [x] A utils module for reading and saving models - [ ] Adding CUDA support - [x] Publish to PyPI - [x] Creating a Documentation for the Project ### Example Usage: This part can be found in the [demo notebook](https://colab.research.google.com/drive/1sqEeUUkG3bTplhlLb73QCGUbaubX2aXi?usp=sharing) mentioned above. - [x] Download and Split a dataset (MNIST or CIFAR-10) to training, validation and testing - [x] Construct an Architecture ([LeNet](https://engmrk.com/lenet-5-a-classic-cnn-architecture/) or [AlexNet](https://dl.acm.org/doi/abs/10.1145/3065386)) and make sure all of its components are provided in your framework. - [x] Train and test the model until a good accuracy is reached (Evaluation Metrics will need to be implemented in the framework also) - [x] Save the model into a compressed format Change Log ========== 0.1.0 (29/1/2021) ------------------- - First Release


نیازمندی

مقدار نام
- numpy
- matplotlib
- varname


نحوه نصب


نصب پکیج whl ainshamsflow-0.1.0:

    pip install ainshamsflow-0.1.0.whl


نصب پکیج tar.gz ainshamsflow-0.1.0:

    pip install ainshamsflow-0.1.0.tar.gz