import aindapy
import random
import time
import json
import datetime
from numpy.core.numeric import _correlate_dispatcher
# import logging
# import http.client as http_client
# http_client.HTTPConnection.debuglevel = 1
# logging.basicConfig()
# logging.getLogger().setLevel(logging.DEBUG)
# requests_log = logging.getLogger("requests.packages.urllib3")
# requests_log.setLevel(logging.DEBUG)
# requests_log.propagate = True
aindapy.config(logLevel=1)
auth = aindapy.Auth(
apiUrl='https://aindaanalytics.com/ainda/api/',
userName='asdfasdfasdfsdfsdf',
passWord='asdfasdfsdf'
)
# The datasource now accepts only the ids, so pls check what is the correct id for it.
# Demo WareHouse dataWareHouseId=7, dataSourceId=20
# Ainda Packaging Line WareHouse dataWareHouseId=8, dataSourceId=22
dataSource = aindapy.DataSource(
auth=auth,
dataWareHouseId=7,
dataSourceId=20
)
# Generate Data for graphics that are not timeseries
data = aindapy.Data(auth=auth, dataSource=dataSource, bufferSize=1000)
# Generate Data Sample for pie
data.deleteDataKeys([
'basicdemo/pie1',
'basicdemo/pie2',
'basicdemo/bar1',
'basicdemo/bar2',
'basicdemo/bar10Columns',
'basicdemo/bar50Columns',
'basicdemo/scaleline250points',
'basicdemo/scaleline500points'
])
data.addToBuffer('basicdemo/pie1', random.randint(50, 150), 'Ilha 1')
data.addToBuffer('basicdemo/pie1', random.randint(70, 180), 'Ilha 2')
data.addToBuffer('basicdemo/pie1', random.randint(10, 75), 'Ilha 3')
data.addToBuffer('basicdemo/pie1', random.randint(25, 45), 'Ilha 4')
data.addToBuffer('basicdemo/pie2', random.randint(50, 150), 'Ilha 1')
data.addToBuffer('basicdemo/pie2', random.randint(70, 180), 'Ilha 2')
data.addToBuffer('basicdemo/pie2', random.randint(10, 75), 'Ilha 3')
data.addToBuffer('basicdemo/pie2', random.randint(25, 45), 'Ilha 4')
data.addToBuffer('basicdemo/pie2', random.randint(25, 45), 'Ilha 4')
data.addToBuffer('basicdemo/pie2', random.randint(25, 45), 'Ilha 4')
data.addToBuffer('basicdemo/pie2', random.randint(25, 45), 'Ilha 4')
# Generate Data Sample for one bar graphic with 10 columns
for step in range(10):
data.addToBuffer('basicdemo/bar10Columns', random.randint(50, 150), step)
# Generate Data Sample for one bar graphic with 50 columns
for step in range(50):
data.addToBuffer('basicdemo/bar50Columns', random.randint(50, 150), step)
# Generate Data Sample for line
for step in range(250):
data.addToBuffer('basicdemo/scaleline250points',
random.randint(50, 150), step)
for step in range(500):
data.addToBuffer('basicdemo/scaleline500points',
random.randint(50, 150), step)
data.commit()
# Generate data for one timeseries datatag. This data we can not deleted what was added before
# If the tag do not exist, the code create this tag inside our system.
stag1 = aindapy.SensorTag(auth=auth, dataSource=dataSource, channel='1', datatag='XRND1', tag='Random Value 1', tag_unit='KG', tag_updaterate=1000)
stag2 = aindapy.SensorTag(auth=auth, dataSource=dataSource, channel='1', datatag='XRND2', tag='Random Value 2', tag_unit='KG', tag_updaterate=1000)
tdata = aindapy.DataTimeSeries(auth=auth, dataSource=dataSource, bufferSize=1000)
for step in range(10000):
tdata.addToBuffer(sensorTag=stag1, timeStamp=datetime.datetime.now(), value=random.randint(45,90))
# if you do not pass timestamp, we will generate internaly
tdata.addToBuffer(sensorTag=stag2, value=random.randint(45,90))
tdata.commit()