معرفی شرکت ها


aicspylibczi-3.0.5.dev0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A python module and a python extension for Zeiss (CZI/ZISRAW) microscopy files.
ویژگی مقدار
سیستم عامل -
نام فایل aicspylibczi-3.0.5.dev0
نام aicspylibczi
نسخه کتابخانه 3.0.5.dev0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jamie Sherman, Paul Watkins
ایمیل نویسنده jamies@alleninstitute.org, pwatkins@gmail.com
آدرس صفحه اصلی https://github.com/AllenCellModeling/aicspylibczi
آدرس اینترنتی https://pypi.org/project/aicspylibczi/
مجوز -
# aicspylibczi [![C++ Build & Test](https://github.com/AllenCellModeling/aicspylibczi/workflows/C%2B%2B%20Build%20Main/badge.svg)](https://github.com/AllenCellModeling/aicspylibczi/actions) [![Python Build & Test](https://github.com/AllenCellModeling/aicspylibczi/workflows/Python%20Build%20Main/badge.svg)](https://github.com/AllenCellModeling/aicspylibczi/actions) [![codecov](https://codecov.io/gh/AllenCellModeling/aicspylibczi/branch/master/graph/badge.svg)](https://codecov.io/gh/AllenCellModeling/aicspylibczi) [![License: GPLv3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://github.com/AllenCellModeling/aicspylibczi/blob/master/LICENSE) Python module to expose [libCZI](https://github.com/zeiss-microscopy/libCZI) functionality for reading (subset of) Zeiss CZI files and meta-data. We only support 64bit architectures currently if you desperately need 32 bit support please make an issue or modify the source and build it for your use case. ## Usage The first example show how to work with a standard CZI file (Single or Multi-Scene). The second example shows how to work with a Mosaic CZI file. #### Example 1: Read in a czi and select a portion of the image to display ```python import numpy as np from aicspylibczi import CziFile from pathlib import Path import matplotlib.pyplot as plt pth = Path('20190610_S02-02.czi') czi = CziFile(pth) # Get the shape of the data, the coordinate pairs are (start index, size) dimensions = czi.get_dims_shape() # [{'X': (0, 1900), 'Y': (0, 1300), 'Z': (0, 60), 'C': (0, 4), 'S': (0, 40), 'B': (0, 1)}] czi.dims # BSCZYX czi.size # (1, 40, 4, 60, 1300, 1900) # Load the image slice I want from the file img, shp = czi.read_image(S=13, Z=16) # shp = [('B', 1), ('S', 1), ('C', 4), ('Z', 1), ('Y', 1300), ('X', 1900)] # List[(Dimension, size), ...] # img.shape = (1, 1, 4, 1, 1300, 1900) # numpy.ndarray # define helper functions def norm_by(x, min_, max_): norms = np.percentile(x, [min_, max_]) i2 = np.clip((x - norms[0]) / (norms[1] - norms[0]), 0, 1) return i2 def recolor(im): # transform from rgb to cyan-magenta-yellow im_shape = np.array(im.shape) color_transform = np.array([[1, 1, 0], [0, 1, 1], [1, 0, 1]]).T im_reshape = im.reshape([np.prod(im_shape[0:2]), im_shape[2]]).T im_recolored = np.matmul(color_transform.T, im_reshape).T im_shape[2] = 3 im = im_recolored.reshape(im_shape) return im # normalize, combine into RGB and transform to CMY c1 = (norm_by(img[0, 0, 0, 0, 0:750, 250:1000], 50, 99.8) * 255).astype(np.uint8) c2 = (norm_by(img[0, 0, 1, 0, 0:750, 250:1000], 50, 99.8) * 255).astype(np.uint8) c3 = (norm_by(img[0, 0, 2, 0, 0:750, 250:1000], 0, 100) * 255).astype(np.uint8) rgb = np.stack((c1, c2, c3), axis=2) cmy = np.clip(recolor(rgb), 0, 255) # plot using matplotlib¶ plt.figure(figsize=(10, 10)) plt.imshow(cmy) plt.axis('off') ``` ![Cardio Image](images/cardio.png) #### Example 2: Read in a mosaic file ```python import numpy as np import aicspylibczi import pathlib from PIL import Image mosaic_file = pathlib.Path('mosaic_test.czi') czi = aicspylibczi.CziFile(mosaic_file) # Get the shape of the data dimensions = czi.dims # 'STCZMYX' czi.size # (1, 1, 1, 1, 2, 624, 924) czi.get_dims_shape() # [{'X': (0, 924), 'Y': (0, 624), 'Z': (0, 1), 'C': (0, 1), 'T': (0, 1), 'M': (0, 2), 'S': (0, 1)}] czi.is_mosaic() # True # Mosaic files ignore the S dimension and use an internal mIndex to reconstruct, the scale factor allows one to generate a manageable image mosaic_data = czi.read_mosaic(C=0, scale_factor=1) mosaic_data.shape # (1, 1, 624, 1756) # the C channel has been specified S & M are used internally for position so this is (T, Z, Y, X) normed_mosaic_data = norm_by(mosaic_data[0, 0, :, :], 5, 98) * 255 img = Image.fromarray(normed_mosaic_data.astype(np.uint8)) ``` ![Mosaic Image](images/mosaic.png) ## Installation The preferred installation method is with `pip install`. This will install the aicspylibczi python module and extension binaries ([hosted on PyPI](https://pypi.org/project/aicspylibczi/)): `pip install aicspylibczi` **If this doesn't work:** Please investigate the following (generally windows issues): - your OS is 64 bit - we only support 64 bit binaries - your python is a 64 bit application (not 32 bit) - are your C++ runtime libraries up to date? [vc_redist.exe](https://aka.ms/vs/16/release/vc_redist.x64.exe) If you have tried this and are still having trouble please reach out to us and we will endeavor to help. ## Documentation Documentation is available at [github.io](https://allencellmodeling.github.io/aicspylibczi). ## Build Use these steps to build and install aicspylibczi locally: - Clone the repository including submodules (`--recurse-submodules`). - Requirements: - libCZI requires a c++11 compatible compiler. Built & Tested with clang. - Development requirements are those required for libCZI: **libpng**, **zlib** - Install the package: ``` pip install . pip install -e .[dev] # for development (-e means editable so changes take effect when made) pip install .[all] # for everything including jupyter notebook to work with the Example_Usage above ``` - libCZI is automatically built as a submodule and linked statically into aicspylibczi. - Note: If you get the message directly below on windows you need to set PYTHONHOME to be the folder the python.exe you are compiling against lives in. ``` EXEC : Fatal Python error : initfsencoding: unable to load the file system codec ... ModuleNotFoundError: No module named 'encodings' ``` ## Known Issues - with read_mosaic if the scale_factor is not 1.0 Zeiss's libCZI will, on some files, fail to render certain subblocks within the composite mosaic image. It is not currently known if this is an issue with the file or with libCZI. ## History aicspylibczi was originally a fork of [pylibczi](https:://github.com/elhuhdron/pylibczi) that was developed by Paul Watkins and focused on mSEM data. In attempting to extend the work to we transitioned to pybind11, implemented c++ and python tests, added continuous integration via github actions, and added the functionality to read individual subblocks and stacks of subblocks as a numpy.ndarray. Metadata reading, including specific subblock metadata reading has also been added. We intend for this work to be merged back into the original project once we have the new work integrated with the original work. ## Licenses & Acknowledgements This project was created from a fork of pylibczi as explained above in the history section and Paul Watkins is a developer on our repo as well. Pylibczi, from the [Center of Advanced European Studies And Research](https://www.caesar.de/en/about-caesar/) and the core dependency libCZI, are covered by the GPLv3 license. The [GPLv3 license](https://www.gnu.org/licenses/gpl-3.0.en.html) is a consequence of libCZI which imposes GPLv3. If you wish to use libCZI or this derivative in a commercial product you may need to talk to Zeiss and CAESAR. [A discussion about GPLv3](https://choosealicense.com/licenses/gpl-3.0/).


نیازمندی

مقدار نام
>=1.14.1 numpy
>=1.14.1 numpy
- codecov
- flake8
- pytest
- pytest-cov
- pytest-raises
- pytest-xdist
- pytest-runner
>=1.0.1 bump2version
>=5.0a4 coverage
>=3.7.7 flake8
>=7.5.0 ipython
>=0.2.7 m2r2
>=4.3.0 pytest
==2.6.1 pytest-cov
>=0.10 pytest-raises
>=4.4 pytest-runner
<3,>=2.3.0 Sphinx
>=0.1.2 sphinx-rtd-theme
- breathe
>=3.5.2 tox
>=1.13.0 twine
>=0.33.1 wheel
- cmake
- altair
- jupyterlab
- matplotlib
- pillow
>=1.0.1 bump2version
>=5.0a4 coverage
>=3.7.7 flake8
>=7.5.0 ipython
>=0.2.7 m2r2
>=4.3.0 pytest
==2.6.1 pytest-cov
>=0.10 pytest-raises
>=4.4 pytest-runner
<3,>=2.3.0 Sphinx
>=0.1.2 sphinx-rtd-theme
- breathe
>=3.5.2 tox
>=1.13.0 twine
>=0.33.1 wheel
- cmake
- altair
- jupyterlab
- matplotlib
- pillow
- pytest-runner
- codecov
- flake8
- pytest
- pytest-cov
- pytest-raises
- pytest-xdist


نحوه نصب


نصب پکیج whl aicspylibczi-3.0.5.dev0:

    pip install aicspylibczi-3.0.5.dev0.whl


نصب پکیج tar.gz aicspylibczi-3.0.5.dev0:

    pip install aicspylibczi-3.0.5.dev0.tar.gz