معرفی شرکت ها


aicsimageio-4.9.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Image Reading, Metadata Conversion, and Image Writing for Microscopy Images in Pure Python
ویژگی مقدار
سیستم عامل -
نام فایل aicsimageio-4.9.4
نام aicsimageio
نسخه کتابخانه 4.9.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Eva Maxfield Brown, Allen Institute for Cell Science
ایمیل نویسنده evamaxfieldbrown@gmail.com, jamie.sherman@gmail.com, bowdenm@spu.edu
آدرس صفحه اصلی https://github.com/AllenCellModeling/aicsimageio
آدرس اینترنتی https://pypi.org/project/aicsimageio/
مجوز BSD-3-Clause
# AICSImageIO [![Build Status](https://github.com/AllenCellModeling/aicsimageio/workflows/Build%20Main/badge.svg)](https://github.com/AllenCellModeling/aicsimageio/actions) [![Documentation](https://github.com/AllenCellModeling/aicsimageio/workflows/Documentation/badge.svg)](https://AllenCellModeling.github.io/aicsimageio/) [![Code Coverage](https://codecov.io/gh/AllenCellModeling/aicsimageio/branch/main/graph/badge.svg)](https://app.codecov.io/gh/AllenCellModeling/aicsimageio/branch/main) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4906608.svg)](https://doi.org/10.5281/zenodo.4906608) Image Reading, Metadata Conversion, and Image Writing for Microscopy Images in Pure Python --- ## Features - Supports reading metadata and imaging data for: - `OME-TIFF` - `TIFF` - `ND2` -- (`pip install aicsimageio[nd2]`) - `DV` -- (`pip install aicsimageio[dv]`) - `CZI` -- (`pip install aicspylibczi>=3.0.5 fsspec>=2022.7.1`) - `LIF` -- (`pip install readlif>=0.6.4`) - `PNG`, `GIF`, [etc.](https://github.com/imageio/imageio) -- (`pip install aicsimageio[base-imageio]`) - Files supported by [Bio-Formats](https://docs.openmicroscopy.org/bio-formats/latest/supported-formats.html) -- (`pip install aicsimageio bioformats_jar`) - Supports writing metadata and imaging data for: - `OME-TIFF` - `PNG`, `GIF`, [etc.](https://github.com/imageio/imageio) -- (`pip install aicsimageio[base-imageio]`) - Supports reading and writing to [fsspec](https://github.com/intake/filesystem_spec) supported file systems wherever possible: - Local paths (i.e. `my-file.png`) - HTTP URLs (i.e. `https://my-domain.com/my-file.png`) - [s3fs](https://github.com/dask/s3fs) (i.e. `s3://my-bucket/my-file.png`) - [gcsfs](https://github.com/dask/gcsfs) (i.e. `gcs://my-bucket/my-file.png`) See [Cloud IO Support](#cloud-io-support) for more details. ## Installation **Stable Release:** `pip install aicsimageio`<br> **Development Head:** `pip install git+https://github.com/AllenCellModeling/aicsimageio.git` AICSImageIO is supported on Windows, Mac, and Ubuntu. For other platforms, you will likely need to build from source. #### Extra Format Installation TIFF and OME-TIFF reading and writing is always available after installing `aicsimageio`, but extra supported formats can be optionally installed using `[...]` syntax. - For a single additional supported format (e.g. ND2): `pip install aicsimageio[nd2]` - For a single additional supported format (e.g. ND2), development head: `pip install "aicsimageio[nd2] @ git+https://github.com/AllenCellModeling/aicsimageio.git"` - For a single additional supported format (e.g. ND2), specific tag (e.g. `v4.0.0.dev6`): `pip install "aicsimageio[nd2] @ git+https://github.com/AllenCellModeling/aicsimageio.git@v4.0.0.dev6"` - For faster OME-TIFF reading with tile tags: `pip install aicsimageio[bfio]` - For multiple additional supported formats: `pip install aicsimageio[base-imageio,nd2]` - For all additional supported (and openly licensed) formats: `pip install aicsimageio[all]` - Due to the GPL license, LIF support is not included with the `[all]` extra, and must be installed manually with `pip install aicsimageio readlif>=0.6.4` - Due to the GPL license, CZI support is not included with the `[all]` extra, and must be installed manually with `pip install aicsimageio aicspylibczi>=3.0.5 fsspec>=2022.7.1` - Due to the GPL license, Bio-Formats support is not included with the `[all]` extra, and must be installed manually with `pip install aicsimageio bioformats_jar`. **Important!!** Bio-Formats support also requires a `java` executable in the environment. The simplest method is to install `bioformats_jar` from conda: `conda install -c conda-forge bioformats_jar` (which will additionally bring `openjdk`). ## Documentation For full package documentation please visit [allencellmodeling.github.io/aicsimageio](https://allencellmodeling.github.io/aicsimageio/index.html). ## Quickstart ### Full Image Reading If your image fits in memory: ```python from aicsimageio import AICSImage # Get an AICSImage object img = AICSImage("my_file.tiff") # selects the first scene found img.data # returns 5D TCZYX numpy array img.xarray_data # returns 5D TCZYX xarray data array backed by numpy img.dims # returns a Dimensions object img.dims.order # returns string "TCZYX" img.dims.X # returns size of X dimension img.shape # returns tuple of dimension sizes in TCZYX order img.get_image_data("CZYX", T=0) # returns 4D CZYX numpy array # Get the id of the current operating scene img.current_scene # Get a list valid scene ids img.scenes # Change scene using name img.set_scene("Image:1") # Or by scene index img.set_scene(1) # Use the same operations on a different scene # ... ``` #### Full Image Reading Notes The `.data` and `.xarray_data` properties will load the whole scene into memory. The `.get_image_data` function will load the whole scene into memory and then retrieve the specified chunk. ### Delayed Image Reading If your image doesn't fit in memory: ```python from aicsimageio import AICSImage # Get an AICSImage object img = AICSImage("my_file.tiff") # selects the first scene found img.dask_data # returns 5D TCZYX dask array img.xarray_dask_data # returns 5D TCZYX xarray data array backed by dask array img.dims # returns a Dimensions object img.dims.order # returns string "TCZYX" img.dims.X # returns size of X dimension img.shape # returns tuple of dimension sizes in TCZYX order # Pull only a specific chunk in-memory lazy_t0 = img.get_image_dask_data("CZYX", T=0) # returns out-of-memory 4D dask array t0 = lazy_t0.compute() # returns in-memory 4D numpy array # Get the id of the current operating scene img.current_scene # Get a list valid scene ids img.scenes # Change scene using name img.set_scene("Image:1") # Or by scene index img.set_scene(1) # Use the same operations on a different scene # ... ``` #### Delayed Image Reading Notes The `.dask_data` and `.xarray_dask_data` properties and the `.get_image_dask_data` function will not load any piece of the imaging data into memory until you specifically call `.compute` on the returned Dask array. In doing so, you will only then load the selected chunk in-memory. ### Mosaic Image Reading Read stitched data or single tiles as a dimension. Readers that support mosaic tile stitching: - `LifReader` - `CziReader` #### AICSImage If the file format reader supports stitching mosaic tiles together, the `AICSImage` object will default to stitching the tiles back together. ```python img = AICSImage("very-large-mosaic.lif") img.dims.order # T, C, Z, big Y, big X, (S optional) img.dask_data # Dask chunks fall on tile boundaries, pull YX chunks out of the image ``` This behavior can be manually turned off: ```python img = AICSImage("very-large-mosaic.lif", reconstruct_mosaic=False) img.dims.order # M (tile index), T, C, Z, small Y, small X, (S optional) img.dask_data # Chunks use normal ZYX ``` If the reader does not support stitching tiles together the M tile index will be available on the `AICSImage` object: ```python img = AICSImage("some-unsupported-mosaic-stitching-format.ext") img.dims.order # M (tile index), T, C, Z, small Y, small X, (S optional) img.dask_data # Chunks use normal ZYX ``` #### Reader If the file format reader detects mosaic tiles in the image, the `Reader` object will store the tiles as a dimension. If tile stitching is implemented, the `Reader` can also return the stitched image. ```python reader = LifReader("ver-large-mosaic.lif") reader.dims.order # M, T, C, Z, tile size Y, tile size X, (S optional) reader.dask_data # normal operations, can use M dimension to select individual tiles reader.mosaic_dask_data # returns stitched mosaic - T, C, Z, big Y, big, X, (S optional) ``` #### Single Tile Absolute Positioning There are functions available on both the `AICSImage` and `Reader` objects to help with single tile positioning: ```python img = AICSImage("very-large-mosaic.lif") img.mosaic_tile_dims # Returns a Dimensions object with just Y and X dim sizes img.mosaic_tile_dims.Y # 512 (for example) # Get the tile start indices (top left corner of tile) y_start_index, x_start_index = img.get_mosaic_tile_position(12) ``` ### Metadata Reading ```python from aicsimageio import AICSImage # Get an AICSImage object img = AICSImage("my_file.tiff") # selects the first scene found img.metadata # returns the metadata object for this file format (XML, JSON, etc.) img.channel_names # returns a list of string channel names found in the metadata img.physical_pixel_sizes.Z # returns the Z dimension pixel size as found in the metadata img.physical_pixel_sizes.Y # returns the Y dimension pixel size as found in the metadata img.physical_pixel_sizes.X # returns the X dimension pixel size as found in the metadata ``` ### Xarray Coordinate Plane Attachment If `aicsimageio` finds coordinate information for the spatial-temporal dimensions of the image in metadata, you can use [xarray](http://xarray.pydata.org/en/stable/index.html) for indexing by coordinates. ```python from aicsimageio import AICSImage # Get an AICSImage object img = AICSImage("my_file.ome.tiff") # Get the first ten seconds (not frames) first_ten_seconds = img.xarray_data.loc[:10] # returns an xarray.DataArray # Get the first ten major units (usually micrometers, not indices) in Z first_ten_mm_in_z = img.xarray_data.loc[:, :, :10] # Get the first ten major units (usually micrometers, not indices) in Y first_ten_mm_in_y = img.xarray_data.loc[:, :, :, :10] # Get the first ten major units (usually micrometers, not indices) in X first_ten_mm_in_x = img.xarray_data.loc[:, :, :, :, :10] ``` See `xarray` ["Indexing and Selecting Data" Documentation](http://xarray.pydata.org/en/stable/indexing.html) for more information. ### Cloud IO Support [File-System Specification (fsspec)](https://github.com/intake/filesystem_spec) allows for common object storage services (S3, GCS, etc.) to act like normal filesystems by following the same base specification across them all. AICSImageIO utilizes this standard specification to make it possible to read directly from remote resources when the specification is installed. ```python from aicsimageio import AICSImage # Get an AICSImage object img = AICSImage("http://my-website.com/my_file.tiff") img = AICSImage("s3://my-bucket/my_file.tiff") img = AICSImage("gcs://my-bucket/my_file.tiff") # Or read with specific filesystem creation arguments img = AICSImage("s3://my-bucket/my_file.tiff", fs_kwargs=dict(anon=True)) img = AICSImage("gcs://my-bucket/my_file.tiff", fs_kwargs=dict(anon=True)) # All other normal operations work just fine ``` Remote reading requires that the file-system specification implementation for the target backend is installed. - For `s3`: `pip install s3fs` - For `gs`: `pip install gcsfs` See the [list of known implementations](https://filesystem-spec.readthedocs.io/en/latest/?badge=latest#implementations). ### Saving to OME-TIFF The simpliest method to save your image as an OME-TIFF file with key pieces of metadata is to use the `save` function. ```python from aicsimageio import AICSImage AICSImage("my_file.czi").save("my_file.ome.tiff") ``` **Note:** By default `aicsimageio` will generate only a portion of metadata to pass along from the reader to the OME model. This function currently does not do a full metadata translation. For finer grain customization of the metadata, scenes, or if you want to save an array as an OME-TIFF, the writer class can also be used to customize as needed. ```python import numpy as np from aicsimageio.writers import OmeTiffWriter image = np.random.rand(10, 3, 1024, 2048) OmeTiffWriter.save(image, "file.ome.tif", dim_order="ZCYX") ``` See [OmeTiffWriter documentation](./aicsimageio.writers.html#aicsimageio.writers.ome_tiff_writer.OmeTiffWriter.save) for more details. #### Other Writers In most cases, `AICSImage.save` is usually a good default but there are other image writers available. For more information, please refer to [our writers documentation](https://allencellmodeling.github.io/aicsimageio/aicsimageio.writers.html). ## Benchmarks AICSImageIO is benchmarked using [asv](https://asv.readthedocs.io/en/stable/). You can find the benchmark results for every commit to `main` starting at the 4.0 release on our [benchmarks page](https://AllenCellModeling.github.io/aicsimageio/_benchmarks/index.html). ## Development See our [developer resources](https://allencellmodeling.github.io/aicsimageio/developer_resources) for information related to developing the code. ## Citation If you find `aicsimageio` useful, please cite this repository as: > Eva Maxfield Brown, Dan Toloudis, Jamie Sherman, Madison Swain-Bowden, Talley Lambert, AICSImageIO Contributors (2021). AICSImageIO: Image Reading, Metadata Conversion, and Image Writing for Microscopy Images in Pure Python [Computer software]. GitHub. https://github.com/AllenCellModeling/aicsimageio bibtex: ```bibtex @misc{aicsimageio, author = {Brown, Eva Maxfield and Toloudis, Dan and Sherman, Jamie and Swain-Bowden, Madison and Lambert, Talley and {AICSImageIO Contributors}}, title = {AICSImageIO: Image Reading, Metadata Conversion, and Image Writing for Microscopy Images in Pure Python}, year = {2021}, publisher = {GitHub}, url = {https://github.com/AllenCellModeling/aicsimageio} } ``` _Free software: BSD-3-Clause_ _(The LIF component is licensed under GPLv3 and is not included in this package)_ _(The Bio-Formats component is licensed under GPLv2 and is not included in this package)_ _(The CZI component is licensed under GPLv3 and is not included in this package)_


نیازمندی

مقدار نام
>=2021.4.1 dask[array]
!=2022.7.0,>=2021.4.0 fsspec
>=2020.5.30 imagecodecs
<5,>=4.6 lxml
<2,>=1.16 numpy
>=0.2 ome-types
>=1.12 wrapt
>=0.1.0 resource-backed-dask-array
>=2021.8.30 tifffile
>=0.16.1 xarray
- xmlschema
<3,>=2.6 zarr
<2.11.0,>=2.9.0 imageio[ffmpeg]
!=8.3.0,<9,>=8.2.0 Pillow
>=0.2.0 nd2[legacy]
>=0.2.0 mrc
>=2.3.0 bfio
<2022.4.22 tifffile
<2.11.0,>=2.9.0 imageio[ffmpeg]
!=8.3.0,<9,>=8.2.0 Pillow
>=5.2 pytest-runner
>=2.1.4 codecov
!=2022.5.1,>=2021.4.1 dask[array,distributed]
<0.16,>=0.10 docutils
>=5.7.0 psutil
>=5.4.3 pytest
>=2.9.0 pytest-cov
>=0.11 pytest-raises
- quilt3
>=0.4.2 s3fs[boto3]
>=3.15.2 tox
>=0.4.2 asv
>=22.3.0 black
>=1.0.1 bump2version
>=5.1 coverage
>=3.8.3 flake8
>=3.2.1 flake8-debugger
>=3.0.4 gitchangelog
>=7.15.0 ipython
>=5.7.0 isort
>=0.2.7 m2r2
>=0.800 mypy
>=3.4.3 Sphinx
>=0.5.1 sphinx-rtd-theme
>=3.1.1 twine
>=0.34.2 wheel
<2.11.0,>=2.9.0 imageio[ffmpeg]
!=8.3.0,<9,>=8.2.0 Pillow
>=0.2.0 nd2[legacy]
>=0.2.0 mrc
>=2.3.0 bfio
<2022.4.22 tifffile
- bioformats-jar
>=0.6.4 readlif
>=3.0.5 aicspylibczi
>=0.6.0 dask-image
>=2.3.0 bfio
<2022.4.22 tifffile
>=5.2 pytest-runner
>=2.1.4 codecov
!=2022.5.1,>=2021.4.1 dask[array,distributed]
<0.16,>=0.10 docutils
>=5.7.0 psutil
>=5.4.3 pytest
>=2.9.0 pytest-cov
>=0.11 pytest-raises
- quilt3
>=0.4.2 s3fs[boto3]
>=3.15.2 tox
>=0.4.2 asv
>=22.3.0 black
>=1.0.1 bump2version
>=5.1 coverage
>=3.8.3 flake8
>=3.2.1 flake8-debugger
>=3.0.4 gitchangelog
>=7.15.0 ipython
>=5.7.0 isort
>=0.2.7 m2r2
>=0.800 mypy
>=3.4.3 Sphinx
>=0.5.1 sphinx-rtd-theme
>=3.1.1 twine
>=0.34.2 wheel
<2.11.0,>=2.9.0 imageio[ffmpeg]
!=8.3.0,<9,>=8.2.0 Pillow
>=0.2.0 nd2[legacy]
>=0.2.0 mrc
>=2.3.0 bfio
<2022.4.22 tifffile
- bioformats-jar
>=0.6.4 readlif
>=3.0.5 aicspylibczi
>=0.2.0 mrc
>=0.2.0 nd2[legacy]
>=5.2 pytest-runner
>=2.1.4 codecov
!=2022.5.1,>=2021.4.1 dask[array,distributed]
<0.16,>=0.10 docutils
>=5.7.0 psutil
>=5.4.3 pytest
>=2.9.0 pytest-cov
>=0.11 pytest-raises
- quilt3
>=0.4.2 s3fs[boto3]
>=3.15.2 tox


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl aicsimageio-4.9.4:

    pip install aicsimageio-4.9.4.whl


نصب پکیج tar.gz aicsimageio-4.9.4:

    pip install aicsimageio-4.9.4.tar.gz