معرفی شرکت ها


ai-economist-1.7.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Foundation: An Economics Simulation Framework
ویژگی مقدار
سیستم عامل -
نام فایل ai-economist-1.7.1
نام ai-economist
نسخه کتابخانه 1.7.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Stephan Zheng, Alex Trott, Sunil Srinivasa
ایمیل نویسنده stephan.zheng@salesforce.com
آدرس صفحه اصلی https://github.com/salesforce/ai-economist
آدرس اینترنتی https://pypi.org/project/ai-economist/
مجوز -
# Foundation: An Economic Simulation Framework This repo contains an implementation of Foundation, a framework for flexible, modular, and composable environments that **model socio-economic behaviors and dynamics in a society with both agents and governments**. Foundation provides a [Gym](https://gym.openai.com/)-style API: - `reset`: resets the environment's state and returns the observation. - `step`: advances the environment by one timestep, and returns the tuple *(observation, reward, done, info)*. This simulation can be used in conjunction with reinforcement learning to learn optimal economic policies, as detailed in the following papers: **[The AI Economist: Improving Equality and Productivity with AI-Driven Tax Policies](https://arxiv.org/abs/2004.13332)**, *Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck, David C. Parkes, Richard Socher.* **[The AI Economist: Optimal Economic Policy Design via Two-level Deep Reinforcement Learning](https://arxiv.org/abs/2108.02755)** *Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C. Parkes, Richard Socher.* **[Building a Foundation for Data-Driven, Interpretable, and Robust Policy Design using the AI Economist](https://arxiv.org/abs/2108.02904)** *Alexander Trott, Sunil Srinivasa, Douwe van der Wal, Sebastien Haneuse, Stephan Zheng.* If you use this code in your research, please cite us using this BibTeX entry: ``` @misc{2004.13332, Author = {Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck, David C. Parkes, Richard Socher}, Title = {The AI Economist: Improving Equality and Productivity with AI-Driven Tax Policies}, Year = {2020}, Eprint = {arXiv:2004.13332}, } ``` For more information and context, check out: - [The AI Economist website](https://www.einstein.ai/the-ai-economist) - [Blog: The AI Economist: Improving Equality and Productivity with AI-Driven Tax Policies](https://blog.einstein.ai/the-ai-economist/) - [Blog: The AI Economist moonshot](https://blog.einstein.ai/the-ai-economist-moonshot/) - [Blog: The AI Economist web demo of the COVID-19 case study](https://blog.einstein.ai/ai-economist-covid-case-study-ethics/) - [Web demo: The AI Economist ethical review of AI policy design and COVID-19 case study](https://einstein.ai/the-ai-economist/ai-policy-foundation-and-covid-case-study) ## Simulation Cards: Ethics Review and Intended Use Please see our [Simulation Card](https://github.com/salesforce/ai-economist/blob/master/Simulation_Card_Foundation_Economic_Simulation_Framework.pdf) for a review of the intended use and ethical review of our framework. Please see our [COVID-19 Simulation Card](https://github.com/salesforce/ai-economist/blob/master/COVID-19_Simulation-Card.pdf) for a review of the ethical aspects of the pandemic simulation (and as fitted for COVID-19). ## Join us on Slack If you're interested in extending this framework, discussing machine learning for economics, and collaborating on research project: - join our Slack channel [aieconomist.slack.com](https://aieconomist.slack.com) using this [invite link](https://join.slack.com/t/aieconomist/shared_invite/zt-g71ajic7-XaMygwNIup~CCzaR1T0wgA), or - email us @ ai.economist@salesforce.com. ## Installation Instructions To get started, you'll need to have Python 3.7+ installed. ### Using pip Simply use the Python package manager: ```python pip install ai-economist ``` ### Installing from Source 1. Clone this repository to your local machine: ``` git clone www.github.com/salesforce/ai-economist ``` 2. Create a new conda environment (named "ai-economist" below - replace with anything else) and activate it ```pyfunctiontypecomment conda create --name ai-economist python=3.7 --yes conda activate ai-economist ``` 3. Either a) Edit the PYTHONPATH to include the ai-economist directory ``` export PYTHONPATH=<local path to ai-economist>:$PYTHONPATH ``` OR b) Install as an editable Python package ```pyfunctiontypecomment cd ai-economist pip install -e . ``` Useful tip: for quick access, add the following to your ~/.bashrc or ~/.bash_profile: ```pyfunctiontypecomment alias aiecon="conda activate ai-economist; cd <local path to ai-economist>" ``` You can then simply run `aiecon` once to activate the conda environment. ### Testing your Install To test your installation, try running: ``` conda activate ai-economist python -c "import ai_economist" ``` ## Getting Started To familiarize yourself with Foundation, check out the tutorials in the `tutorials` folder. You can run these notebooks interactively in your browser on Google Colab. ### Multi-Agent Simulations - [economic_simulation_basic](https://www.github.com/salesforce/ai-economist/blob/master/tutorials/economic_simulation_basic.ipynb) ([Try this on Colab](http://colab.research.google.com/github/salesforce/ai-economist/blob/master/tutorials/economic_simulation_basic.ipynb)!): Shows how to interact with and visualize the simulation. - [economic_simulation_advanced](https://www.github.com/salesforce/ai-economist/blob/master/tutorials/economic_simulation_advanced.ipynb) ([Try this on Colab](http://colab.research.google.com/github/salesforce/ai-economist/blob/master/tutorials/economic_simulation_advanced.ipynb)!): Explains how Foundation is built up using composable and flexible building blocks. - [optimal_taxation_theory_and_simulation](https://github.com/salesforce/ai-economist/blob/master/tutorials/optimal_taxation_theory_and_simulation.ipynb) ([Try this on Colab](https://colab.research.google.com/github/salesforce/ai-economist/blob/master/tutorials/optimal_taxation_theory_and_simulation.ipynb)!): Demonstrates how economic simulations can be used to study the problem of optimal taxation. - [covid19_and_economic_simulation](https://www.github.com/salesforce/ai-economist/blob/master/tutorials/covid19_and_economic_simulation.ipynb) ([Try this on Colab](http://colab.research.google.com/github/salesforce/ai-economist/blob/master/tutorials/covid19_and_economic_simulation.ipynb)!): Introduces a simulation on the COVID-19 pandemic and economy that can be used to study different health and economic policies . ### Multi-Agent Training - [multi_agent_gpu_training_with_warp_drive](https://github.com/salesforce/ai-economist/blob/master/tutorials/multi_agent_gpu_training_with_warp_drive.ipynb) ([Try this on Colab](http://colab.research.google.com/github/salesforce/ai-economist/blob/master/tutorials/multi_agent_gpu_training_with_warp_drive.ipynb)!): Introduces our multi-agent reinforcement learning framework [WarpDrive](https://arxiv.org/abs/2108.13976), which we then use to train the COVID-19 and economic simulation. - [multi_agent_training_with_rllib](https://github.com/salesforce/ai-economist/blob/master/tutorials/multi_agent_training_with_rllib.ipynb) ([Try this on Colab](http://colab.research.google.com/github/salesforce/ai-economist/blob/master/tutorials/multi_agent_training_with_rllib.ipynb)!): Shows how to perform distributed multi-agent reinforcement learning with [RLlib](https://docs.ray.io/en/latest/rllib/index.html). - [two_level_curriculum_training_with_rllib](https://github.com/salesforce/ai-economist/blob/master/tutorials/two_level_curriculum_learning_with_rllib.md): Describes how to implement two-level curriculum training with [RLlib](https://docs.ray.io/en/latest/rllib/index.html). To run these notebooks *locally*, you need [Jupyter](https://jupyter.org). See [https://jupyter.readthedocs.io/en/latest/install.html](https://jupyter.readthedocs.io/en/latest/install.html) for installation instructions and [(https://jupyter-notebook.readthedocs.io/en/stable/](https://jupyter-notebook.readthedocs.io/en/stable/) for examples of how to work with Jupyter. ## Structure of the Code - The simulation is located in the `ai_economist/foundation` folder. The code repository is organized into the following components: | Component | Description | | --- | --- | | [base](https://www.github.com/salesforce/ai-economist/blob/master/ai_economist/foundation/base) | Contains base classes to can be extended to define Agents, Components and Scenarios. | | [agents](https://www.github.com/salesforce/ai-economist/blob/master/ai_economist/foundation/agents) | Agents represent economic actors in the environment. Currently, we have mobile Agents (representing workers) and a social planner (representing a government). | | [entities](https://www.github.com/salesforce/ai-economist/blob/master/ai_economist/foundation/entities) | Endogenous and exogenous components of the environment. Endogenous entities include labor, while exogenous entity includes landmarks (such as Water and Grass) and collectible Resources (such as Wood and Stone). | | [components](https://www.github.com/salesforce/ai-economist/blob/master/ai_economist/foundation/components) | Components are used to add some particular dynamics to an environment. They also add action spaces that define how Agents can interact with the environment via the Component. | | [scenarios](https://www.github.com/salesforce/ai-economist/blob/master/ai_economist/foundation/scenarios) | Scenarios compose Components to define the dynamics of the world. It also computes rewards and exposes states for visualization. | - The datasets (including the real-world data on COVID-19) are located in the `ai_economist/datasets` folder. ## Releases and Contributing - Please let us know if you encounter any bugs by filing a GitHub issue. - We appreciate all your contributions. If you plan to contribute new Components, Scenarios Entities, or anything else, please see our [contribution guidelines](https://www.github.com/salesforce/ai-economist/blob/master/CONTRIBUTING.md). ## Changelog For the complete release history, see [CHANGELOG.md](https://www.github.com/salesforce/ai-economist/blob/master/CHANGELOG.md). ## License Foundation and the AI Economist are released under the [BSD-3 License](LICENSE.txt).


نیازمندی

مقدار نام
==1.4.4 appdirs
==0.1.2 appnope
==20.1.0 argon2-cffi
==2.5.6 astroid
==1.10 async-generator
==21.2.0 attrs
==0.2.0 backcall
==4.9.3 beautifulsoup4
==21.5b1 black
==3.3.0 bleach
==0.0.1 bs4
==2020.12.5 certifi
==1.14.5 cffi
==4.0.0 chardet
==8.0.1 click
==0.10.0 cycler
==5.0.9 decorator
==0.7.1 defusedxml
==0.3 entrypoints
==1.1.0 et-xmlfile
==3.9.2 flake8
==1.4.0 GPUtil
==2.10 idna
==1.1.1 iniconfig
==5.5.5 ipykernel
==7.31.1 ipython
==0.2.0 ipython-genutils
==7.6.3 ipywidgets
==5.8.0 isort
==0.18.0 jedi
==3.0.1 Jinja2
==3.2.0 jsonschema
==1.0.0 jupyter
==6.1.12 jupyter-client
==6.4.0 jupyter-console
==4.7.1 jupyter-core
==0.1.2 jupyterlab-pygments
==1.0.0 jupyterlab-widgets
==1.3.1 kiwisolver
==1.6.0 lazy-object-proxy
==3.1.3 lz4
==2.0.1 MarkupSafe
==3.2.1 matplotlib
==0.1.2 matplotlib-inline
==0.6.1 mccabe
==0.8.4 mistune
==0.4.3 mypy-extensions
==0.5.3 nbclient
==6.0.7 nbconvert
==5.1.3 nbformat
==1.5.1 nest-asyncio
==6.4.1 notebook
==1.21.0 numpy
==3.0.7 openpyxl
==20.9 packaging
==1.2.4 pandas
==1.4.3 pandocfilters
==0.8.2 parso
==0.8.1 pathspec
==4.8.0 pexpect
==0.7.5 pickleshare
==9.0.0 Pillow
==0.13.1 pluggy
==0.10.1 prometheus-client
==3.0.18 prompt-toolkit
==0.7.0 ptyprocess
==1.10.0 py
==2.7.0 pycodestyle
==2.20 pycparser
==3.10.1 pycryptodome
==2.3.1 pyflakes
==2.9.0 Pygments
==2.8.2 pylint
==2.4.7 pyparsing
==0.17.3 pyrsistent
==6.2.4 pytest
==2.8.1 python-dateutil
==2021.1 pytz
==5.4.1 pyyaml
==22.0.3 pyzmq
==5.1.0 qtconsole
==1.9.0 QtPy
==2021.4.4 regex
==2.25.1 requests
==1.6.3 scipy
==1.5.0 Send2Trash
==1.16.0 six
==2.2.1 soupsieve
==0.10.0 terminado
==0.5.0 testpath
==0.10.2 toml
==6.1 tornado
==4.60.0 tqdm
==5.0.5 traitlets
==3.10.0.0 typing-extensions
==1.26.5 urllib3
==0.2.5 wcwidth
==0.5.1 webencodings
==3.5.1 widgetsnbextension
==1.12.1 wrapt


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl ai-economist-1.7.1:

    pip install ai-economist-1.7.1.whl


نصب پکیج tar.gz ai-economist-1.7.1:

    pip install ai-economist-1.7.1.tar.gz