معرفی شرکت ها


ai-core-sdk-1.9.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

SAP AI Core SDK
ویژگی مقدار
سیستم عامل -
نام فایل ai-core-sdk-1.9.0
نام ai-core-sdk
نسخه کتابخانه 1.9.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده SAP SE
ایمیل نویسنده -
آدرس صفحه اصلی https://www.sap.com/
آدرس اینترنتی https://pypi.org/project/ai-core-sdk/
مجوز SAP DEVELOPER LICENSE AGREEMENT
# SAP AI Core SDK The SAP AI Core SDK is a Python-based SDK that lets you access SAP AI Core using Python methods and data structures. It provides tools that help you to manage your scenarios and workflows in SAP AI Core. The SAP AI Core SDK can be used to interact with SAP AI Core. It provides access to all public lifecycle and administration APIs. For example: * You can execute pipelines as a batch job to preprocess or train your models, or perform batch inference. * You can deploy а trained machine learning model as a web service to serve inference requests with high performance. * You can register your own Docker registry, synchronize your AI content from your own git repository, and register your own object store for training data and trained models. * You can log metrics within a workflow execution using the SDK. You can use the same code for tracking metrics in both your local environment and in the workflow execution (production). > **Note** > > Note that executing online inference is not part of SAP AI Core SDK. > > Metrics persistence is not currently available in your local environment using the SDK. However, it is available in your productive workflow execution. ## Example Usage The SDK can, for instance, be used in a Jupyter notebook for convenient interaction with SAP AI Core in a test or development context. Here are a few examples how to use the SDK. For details on the methods, please refer to the html documentation provided in the `/docs` folder of the wheel file. ### Import Definitions ```python from ai_core_sdk.ai_core_v2_client import AICoreV2Client ``` ## Create Client ```python client = AICoreV2Client(base_url=AI_API_BASE, auth_url=AUTH_URL, client_id=CLIENT_ID, client_secret=CLIENT_SECRET, resource_group=resource_group_id) ``` ### Create New Resource Group ```python resource_group_create = client.resource_groups.create(resource_group_id=resource_group_id) print(resource_group_create.resource_group_id) resource_group_details = client.resource_groups.get(resource_group_id=resource_group_id) print(f"{resource_group_details.status_message} \n{resource_group_details.resource_group_id}") ``` ### Create Object Store Secret ```python # access key and secret are assumed to reside in environment variables OSS_KEY and OSS_SECRET object_store_secret_create = client.object_store_secrets.create( name="default", type="S3", bucket="<your S3 bucket>", endpoint="<your S3 host>", path_prefix="<your path prefix in S3>", region="<your S3 region>", data={"AWS_ACCESS_KEY_ID": os.environ.get("OSS_KEY"), "AWS_SECRET_ACCESS_KEY": os.environ.get("OSS_SECRET")}) secret_get = client.object_store_secrets.get(name="default") print(f"{secret_get.metadata}") ``` ### List Scenarios ```python scenarios = client.scenario.query() for scenario in scenarios.resources: print(f"{scenario.name} {scenario.id}") ``` ## AICore Content Packages ai-core-sdk provides a command-line utility as well as a python library to use AICore content packages. ### Installation The content functionality should be installed as an optional dependency of ai-core-sdk: ```bash pip install ai-core-sdk[aicore-content] ``` Content packages use Metaflow's Argo Workflows plugin to generate templates for AICore and hence Metaflow should be also configured. Run a configuration wizzard: ```bash metaflow configure kubernetes ``` or create a simple configuration file `~/.metaflowconfig/config.json` with a link to the configured in AICore object store: ```bash { "METAFLOW_DEFAULT_DATASTORE": "s3", "METAFLOW_DATASTORE_SYSROOT_S3": "s3://<bucket>/<prefix>" } ``` See [Configuring Metaflow](https://outerbounds.com/docs/configure-metaflow) for more details. ### Discover Content Packages and their Content **CLI** Echo descriptions of all packages from all registires: ```bash aicore-content list ``` To add custom content package spec the environment variable `AI_CORE_CONTENT_SPECS` ([`.env`](https://pypi.org/project/python-dotenv/) file is also supported ) or the `-c <path to content spec py/yaml>` option can be used: ```bash aicore-content -c ai_core_content_spec.py list export AI_CORE_CONTENT_SPECS=$PWD/ai_core_content_spec.py && aicore-content show echo "AI_CORE_CONTENT_SPECS=$PWD/ai_core_content_spec.py" >> .env && aicore-content show ``` **Python** All packages: ```python from ai_core_sdk.content import get_content_packages # function to fetch a list of all packages from all registries for content_pkg in get_content_packages().values(): content_pkg.print() # print more details for each package ``` The content specs can also be used directly: ```python from content_package.ai_core_content_spec import package_spec_obj package_spec_obj.print() ``` A content packages consists of multiple *workflows*. **Workflows** can be AI Core **Executions** or **Deployments**. **CLI** List of all workflows available: ```bash aicore-content list <name of the package> ``` Details of a specific workflow: ```bash aicore-content show <name of the package> <name of the workflow> ``` **Python** All packages: ```python from ai_core_sdk.content import get_content_packages # function to fetch a list of all packages from all registries package = [*get_content_packages().values()][0] # Get a ContentPackage object workflows = package.workflows # get all workflows from a package for flow in workflows: flow.print(compact=True) # Print a compact description of the workflow for flow in workflows: flow.print(compact=False) # Print a detailed description of the workflow. ``` When using `python` a package can also directly used from the `ContentPackage` file without registering: ```python # Load the object from the submodule from content_package.ai_core_content_spec import package_spec_obj [*package_spec_obj.workflows.values()][0].print(compact=True) # create the object from content package spec yaml from ai_core_sdk.content import ContentPackage package_spec_obj = ContentPackage.from_yaml('<path to package spec yaml>') [*package_spec_obj.workflows.values()][0].print(compact=True) # load content package specs from .py file from ai_core_sdk.content import get_content_packages_from_py_file list_of_package_specs = get_content_packages_from_py_file('<path to package spec py>') # a .py file can contain multiple package specs for package_spec_obj in list_of_package_specs: [*package_spec_obj.workflows.values()][0].print(compact=True) ``` ### User's workflow configuration Every AICore template has a section with a user-specific information, i.e. scenario, docker repo, secret names, etc. To generate a template from a content package with user settings, user should create a *workflow configuration*. This is a yaml file with a following structure: ```bash .contentPackage: my-package .workflow: my-package-workflow .dockerType: gpu name: "my-executable-id" labels: scenarios.ai.sap.com/id: "my-scenario-id" ai.sap.com/version: "0.0.1" annotations: scenarios.ai.sap.com/name: "my-scenario-name" executables.ai.sap.com/description: "My description" executables.ai.sap.com/name: "my-executable-name" image: "my-docker-image" imagePullSecret: "my-docker-registry-secret" objectStoreSecret: "default-object-store-secret" ``` In this config the target content package and workflow can be referenced using the keys `.package` and `.workflow`. If provided those references are used to create the image and template. If not provided the package and the workflow have to be specified with `--package` and `--workflow` options (see following sections for details). ### Create Docker images To run an execution or start a deployment, at least one docker image is needed. Required docker images could be generated through the CLI/Python calls. Both run a `docker build` internally. **CLI** To create docker images: ```bash aicore-content create-image [--package=<package name>] [--workflow=<workflow name>] <workflow config> ``` The command-line options `--package` and `--workflow` overwrite valudes from the worfklow config. The building process has to be followed by a `docker push -t <generated-image>` to push the container to the registry. **Python** The workflow objects got a function `.create_image(...)`: ```python workflow = content_package_spec_obj['batch_processing'] # fetch the workflow object using its name docker_tag = 'my-very-own-docker.repo/sap-cv-batch-processing:0.0.1' workflow_config = 'my-config.yaml' with open(workflow_config) as stream workflow_config = yaml.load(stream) cmd = workflow.create_image(workflow_config, return_cmd=True) # perform a dry run and return the cmd print(cmd) workflow.create_image(workflow_config) # actually build the docker container os.system(f'docker push {workflow_config["image"]}') # push the container ``` ### Create AI Core Templates The template creation is similar for Execution and Deployment templates. #### Create Execution Templates To create execution templates the [metaflow argo plugin](https://pypi.org/project/sap-ai-core-metaflow/) is used. **CLI** Workflow templates need a workflow config to be provided to the `create-template` subcommand. ```bash aicore-content create-template [--package=<package name>] [--workflow=<workflow name>] <workflow config> -o <path to output template.json> ``` **Python** The workflow config for execution templates has to be provided to the workflows's `.create_template(...)` function. The output file can be specified through the keyword parameter `target_file`: ```python workflow.create_template('my-workflow-config.yaml', target_file='workflow-template.json') ``` **Additonal Options** Additional arguments can be defined in the workflow config under the key `additionalOptions`. ```yaml ... additionalOptions: workflow: # list of strings passed as workflow options ... metaflow: # list of strings passed as metaflow options - --package-suffixes=.py,.sh ``` Strings in the `workflow`/`metaflow` pasted into these positions: ```bash python -m flow [metaflow] argo create [workflow] ``` To check the resulting call an `--dry-run`(CLI)/`return_cmd=True`(Python) option is availble. Alternativly the subcommand `aicore-content <package name> metaflow-cli <workflow name>` or `workflow.raw_metaflow_cli(...)`. Every input after the command is directly passed to the underlying `python -m <flow>` call. #### Create Serving Templates **CLI** Serving templates also need a *workflow config* to be passed to the `create-template` subcommand. ```bash aicore-content create-template [--package=<package name>] [--workflow=<workflow name>] <workflow config> -o <path to output template.yaml> ``` **Python** The workflow config has to be provided to the workflows's `.create_template(...)` function. The output file can be specified through the keyword parameter `target_file`: ```python workflow.create_template('my-workflow-config.yaml', target_file='serving-template.yaml') ``` ### Content Package Creation A content package needs two additional files: the `ContentPackage` file and a workflows yaml. #### `ContentPackage` Content package are defined in a `ContentPackage` instance. This instance can either be loaded from a `.py`file or can be created from a yaml. A typical `.py` file looks like this: ```python import pathlib import yaml from ai_core_sdk.content import ContentPackage HERE = pathlib.Path(__file__).parent workflow_yaml = HERE / 'workflows.yaml' with workflow_yaml.open() as stream: workflows = yaml.safe_load(stream) spec = ContentPackage( name='my-package name', # name of the package and the aicore-content cli subcommand workflows_base_path=workflow_yaml.parent, # Base paths for all relative paths in the workflow dict workflows=workflows, description='This is an epic content package.', # Package description examples=HERE / 'examples', # Folder to package related examples [optional] version='0.0.1' # Version of the package ) ``` If the package is to be distributed as a python module via Nexus or PyPI and the content package spec python file should be included in the package as `ai_core_content_spec.py`. This allows the CLI to find the package without additional configuration efforts and creates a subcommand using the name from the `ContentPackage.name` attribute. ##### Examples Examples for the content package can copy by the consumer to a directory using the command `aicore-content examples <package name> <target folder>`. This command creates the target folder and copies all files from the paths set in the `ContentPackage`. If no path is set or the path does not exists the `examples` subcommand is not created. ##### Version Currently the version in the `ContentPackage` is passed to the docker build call as `--build-arg pkg_version==={version}`. In the `Dockerfile` this build argument can be used to build the docker container using the local version of the package. This is useful for content packages distributed as module through Nexus or PyPI: ```Dockerfile FROM pytorch/pytorch ARG pkg_version= ENV pkg_version=$pkg_version ... RUN python -m pip install sap-computer-vision-package${pkg_version} ``` #### Workflows File The second mandatory file a workflows yaml. This yaml is used to define workflows and is structed like a dictionary: Entries of the dict look like this: ```Yaml name-of-the-workflow: description: > Description text [optional] dockerfile: ... type: ExecutionMetaflow/DeploymentYAML [... more type specific fields] ``` It is important that all paths in the workflow yaml are specified as paths relative to the workflow yaml`s path. This also means that all files must be located in the same folder or in subfolders. #### Dockerfiles The dockerfile entry can either be a single: ```Yaml dockerfile: train_workflow/Dockerfile ``` or a dictionary of paths: ```Yaml dockerfile: cpu: train_workflow/Dockerfile gpu: train_workflow/Dockerfile ``` This allows to define different Docker container for different node types or multiple containers for cases where different steps use different containers. The different dockerfile can be selected using the option/argument `docker_type` when running the build docker command/function. #### Types Currently two types of workflows are supported: * `ExecutionMetaflow`: exections defined as metaflow flowspecs * `DeploymentYaml`: deployment defined as yamls ##### ExecutionMetaflow Additional fields for a `ExecutionMetaflow` entry are * `py`: path to the python file containing the `metaflow.FlowSpec` class * `className`: name of the `metaflow.FlowSpec` class * `additionalOptions` (optional): The section is identical to the `additionalOptions` from the workflow configs. ```Yaml train-workflow: description: > Description text [optional] dockerfile: cpu: train/Dockerfile cpu: train/DockerfileGPU type: ExecutionMetaflow py: train/flow.py className: TrainingFlow additionalOptions: annotations: artifacts.ai.sap.com/datain.kind: dataset artifacts.ai.sap.com/trainedmodel.kind: model labels: ... workflow: # list of strings passed as workflow options ... metaflow: # list of strings passed as metaflow options (only valid for ExecutionMetaflow) - --package-suffixes=.py,.sh ``` ##### DeploymentYaml Additional fields: * `yaml`: contains a path to a Deployment Template. ```Yaml my_deployment: type: DeploymentYaml yaml: deploy/template.yaml dockerfile: deploy/Dockerfile ``` A Deployment Template is a regular Serving Template. Data from `name`, `annotations` and `labels` fields from a user-defined workflow config would replace correspondent attributes in the template. In addition, variables `$image` and `$imagePullSecret` will be replaced with the values from the workflow config. ```Yaml apiVersion: ai.sap.com/v1alpha1 kind: ServingTemplate metadata: name: my-serving annotations: executables.ai.sap.com/name: my-serving executables.ai.sap.com/description: "My model serving" labels: ai.sap.com/version: "0.0.1" spec: template: apiVersion: serving.kserve.io/v1beta1 metadata: labels: | ai.sap.com/resourcePlan: "infer.s" spec: | predictor: imagePullSecrets: - name: $imagePullSecret containers: - name: kserve-container image: $image ``` ##### `ContentPackage` from yaml The specification of a content package and of the workflows can also be merged into a single yaml file: ```yaml name: test-spec-yaml examples: examples description: | this is a test. show_files: test: SHOW_FILE workflows: test_execution: type: ExecutionMetaflow className: TestPipeline py: train/flow.py dockerfile: cpu: train/Dockerfile gpu: train/DockerfileGPU annotations: artifacts.ai.sap.com/datain.kind: dataset artifacts.ai.sap.com/trainedmodel.kind: model metaflow: - --package-suffixes=.py,.s ``` Currently there is no discovery mechanism for yaml specs. They either have to be consumed in python: ```python from ai_core_sdk.content import ContentPackage content_package = ContentPackage.from_yaml(spec_yaml) ``` or made available to the CLI through the `aicore-content -c <path to the spec yaml> ...` option or through the `AI_CORE_CONTENT_SPECS` environment variable. ## Tracking The tracking module of the SAP AI Core SDK can be used to log metrics in both your local environment, and productive workflow executions. Metrics persistence is currently available in your productive environment. Here are a few code samples demonstrating how to use the SDK for metrics tracking. ### Modify Metrics ``` from ai_core_sdk.tracking import Tracking from ai_core_sdk.models import Metric, MetricTag, MetricCustomInfo tracking_client = Tracking() tracking_client.modify( tags = [ # list MetricTag(name="Our Team Tag", value="Tutorial Team"), MetricTag(name="Stage", value="Development") ], metrics = [ Metric( name="Training Loss", value=np.finfo(np.float64).max, timestamp= datetime.now().utcnow(), step = 1, # denotes epoch 1 labels = [] ) ], custom_info = [ # list of Custom Information MetricCustomInfo( name = "My Classification Report", # you may convert anything to string and store it value = str('''{ "Cats": { "Precision": 75, "Recall": 74 }, "Dogs": { "Precision": 85, "Recall": 84 } }''') ) ] ) ``` ### Log Metrics ``` tracking_client.log_metrics( metrics = [ Metric( name="Training Loss", value=float(86.99), timestamp= datetime.now().utcnow(), step = 1, # denotes epoch 1 labels = [] ), ], ) ``` ### Set Tags ``` tracking_client.set_tags( tags = [ # list MetricTag(name="Our Team Tag", value="Tutorial Team"), MetricTag(name="Stage", value="Development") ] ) ``` ### Set Custom Info ``` tracking_client.set_custom_info( custom_info = [ # list of Custom Information MetricCustomInfo( name = "My Classification Report", # you may convert anything to string and store it value = str(''' { "Cats": { "Precision": 75, "Recall": 74 }, "Dogs": { "Precision": 85, "Recall": 84 } } ''' ) ), ] ) ``` ### Query Metrics ``` metrics_response = tracking_client.query(execution_ids = [ "test_execution_id" # Change this with the training execution id ]) ``` ### Delete Metrics ``` metrics_response = tracking_client.delete(execution_id = "test_execution_id") # Change this with the actual execution id ```


نیازمندی

مقدار نام
==1.26.0 ai-api-client-sdk
~=1.1.1 sap-ai-core-metaflow[kubernetes]
~=8.0.4 click
~=1.22.94 awscli
~=0.19.2 python-dotenv
~=1.1.1 sap-ai-core-metaflow[kubernetes]
~=8.0.4 click
~=1.22.94 awscli
~=0.19.2 python-dotenv


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl ai-core-sdk-1.9.0:

    pip install ai-core-sdk-1.9.0.whl


نصب پکیج tar.gz ai-core-sdk-1.9.0:

    pip install ai-core-sdk-1.9.0.tar.gz