معرفی شرکت ها


agml-0.4.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A comprehensive library for agricultural deep learning
ویژگی مقدار
سیستم عامل -
نام فایل agml-0.4.6
نام agml
نسخه کتابخانه 0.4.6
نگهدارنده ['Amogh Joshi']
ایمیل نگهدارنده ['amnjoshi@ucdavis.edu']
نویسنده UC Davis Plant AI and Biophysics Lab
ایمیل نویسنده jmearles@ucdavis.edu
آدرس صفحه اصلی https://github.com/plant-ai-biophysics-lab/AgML
آدرس اینترنتی https://pypi.org/project/agml/
مجوز -
<p align="center"> <img src="/figures/agml-logo.png" alt="agml framework" width="400" height="400"> </p> ---- ### 👨🏿‍💻👩🏽‍💻🌈🪴 Want to join the [AI Institute for Food Systems team](https://aifs.ucdavis.edu/) and help lead AgML development? 🪴🌈👩🏼‍💻👨🏻‍💻 We're looking to hire a postdoc with both Python library development and ML experience. Send your resume and GitHub profile link to [jmearles@ucdavis.edu](mailto:jmearles@ucdavis.edu)! ---- ## Overview AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks. In the future, AgML will provide ag-specific ML functionality related to data, training, and evaluation. Here's a conceptual diagram of the overall framework. <p align="center"> <img src="/figures/agml-framework.png" alt="agml framework" width="350" height="291"> </p> AgML supports both the [TensorFlow](https://www.tensorflow.org/) and [PyTorch](https://pytorch.org/) machine learning frameworks. ## Installation To install the latest release of AgML, run the following command: ```shell pip install agml ``` ## Quick Start AgML is designed for easy usage of agricultural data in a variety of formats. You can start off by using the `AgMLDataLoader` to download and load a dataset into a container: ```python import agml loader = agml.data.AgMLDataLoader('apple_flower_segmentation') ``` You can then use the in-built processing methods to get the loader ready for your training and evaluation pipelines. This includes, but is not limited to, batching data, shuffling data, splitting data into training, validation, and test sets, and applying transforms. ```python import albumentations as A # Batch the dataset into collections of 8 pieces of data: loader.batch(8) # Shuffle the data: loader.shuffle() # Apply transforms to the input images and output annotation masks: loader.mask_to_channel_basis() loader.transform( transform = A.RandomContrast(), dual_transform = A.Compose([A.RandomRotate90()]) ) # Split the data into train/val/test sets. loader.split(train = 0.8, val = 0.1, test = 0.1) ``` The split datasets can be accessed using `loader.train_data`, `loader.val_data`, and `loader.test_data`. Any further processing applied to the main loader will be applied to the split datasets, until the split attributes are accessed, at which point you need to apply processing independently to each of the loaders. You can also turn toggle processing on and off using the `loader.eval()`, `loader.reset_preprocessing()`, and `loader.disable_preprocessing()` methods. You can visualize data using the `agml.viz` module, which supports multiple different types of visualization for different data types: ```python # Disable processing and batching for the test data: test_ds = loader.test_data test_ds.batch(None) test_ds.reset_prepreprocessing() # Visualize the image and mask side-by-side: agml.viz.visualize_image_and_mask(test_ds[0]) # Visualize the mask overlaid onto the image: agml.viz.visualize_overlaid_masks(test_ds[0]) ``` AgML supports both the TensorFlow and PyTorch libraries as backends, and provides functionality to export your loaders to native TensorFlow and PyTorch formats when you want to use them in a training pipeline. This includes both exporting the `AgMLDataLoader` to a `tf.data.Dataset` or `torch.utils.data.DataLoader`, but also internally converting data within the `AgMLDataLoader` itself, enabling access to its core functionality. ```python # Export the loader as a `tf.data.Dataset`: train_ds = loader.train_data.export_tensorflow() # Convert to PyTorch tensors without exporting. train_ds = loader.train_data train_ds.as_torch_dataset() ``` You're now ready to use AgML for training your own models! ## Public Dataset Listing | Dataset | Task | Number of Images | | :--- | ---: | ---: | [bean_disease_uganda](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/bean_disease_uganda.md) | Image Classification | 1295 | [carrot_weeds_germany](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/carrot_weeds_germany.md) | Semantic Segmentation | 60 | [plant_seedlings_aarhus](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/plant_seedlings_aarhus.md) | Image Classification | 5539 | [soybean_weed_uav_brazil](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/soybean_weed_uav_brazil.md) | Image Classification | 15336 | [sugarcane_damage_usa](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/sugarcane_damage_usa.md) | Image Classification | 153 | [crop_weeds_greece](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/crop_weeds_greece.md) | Image Classification | 508 | [sugarbeet_weed_segmentation](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/sugarbeet_weed_segmentation.md) | Semantic Segmentation | 1931 | [rangeland_weeds_australia](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/rangeland_weeds_australia.md) | Image Classification | 17509 | [fruit_detection_worldwide](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/fruit_detection_worldwide.md) | Object Detection | 565 | [leaf_counting_denmark](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/leaf_counting_denmark.md) | Image Classification | 9372 | [apple_detection_usa](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/apple_detection_usa.md) | Object Detection | 2290 | [mango_detection_australia](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/mango_detection_australia.md) | Object Detection | 1730 | [apple_flower_segmentation](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/apple_flower_segmentation.md) | Semantic Segmentation | 148 | [apple_segmentation_minnesota](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/apple_segmentation_minnesota.md) | Semantic Segmentation | 670 | [rice_seedling_segmentation](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/rice_seedling_segmentation.md) | Semantic Segmentation | 224 | [plant_village_classification](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/plant_village_classification.md) | Image Classification | 55448 | [autonomous_greenhouse_regression](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/autonomous_greenhouse_regression.md) | Image Regression | 389 | [grape_detection_syntheticday](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/grape_detection_syntheticday.md) | Object Detection | 448 | [grape_detection_californiaday](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/grape_detection_californiaday.md) | Object Detection | 126 | [grape_detection_californianight](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/grape_detection_californianight.md) | Object Detection | 150 | [guava_disease_pakistan](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/guava_disease_pakistan.md) | Image Classification | 306 | [apple_detection_spain](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/apple_detection_spain.md) | Object Detection | 967 | [apple_detection_drone_brazil](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/apple_detection_drone_brazil.md) | Object Detection | 689 | [plant_doc_classification](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/plant_doc_classification.md) | Image Classification | 2598 | [plant_doc_detection](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/plant_doc_detection.md) | Object Detection | 2598 | [wheat_head_counting](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/wheat_head_counting.md) | Object Detection | 6512 | [peachpear_flower_segmentation](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/peachpear_flower_segmentation.md) | Semantic Segmentation | 42 | [red_grapes_and_leaves_segmentation](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/red_grapes_and_leaves_segmentation.md) | Semantic Segmentation | 258 | [white_grapes_and_leaves_segmentation](https://github.com/Project-AgML/AgML/blob/main/docs/datasets/white_grapes_and_leaves_segmentation.md) | Semantic Segmentation | 273 | ## Usage Information ### Using Public Agricultural Data AgML aims to provide easy access to a range of existing public agricultural datasets The core of AgML's public data pipeline is [`AgMLDataLoader`](/agml/data/loader.py). You can use the `AgMLDataLoader` or `agml.data.download_public_dataset()` to download the dataset locally from which point it will be automatically loaded from the disk on future runs. From this point, the data within the loader can be split into train/val/test sets, batched, have augmentations and transforms applied, and be converted into a training-ready dataset (including batching, tensor conversion, and image formatting). To see the various ways in which you can use AgML datasets in your training pipelines, check out the [example notebook](/examples/AgML-Data.ipynb). ## Annotation Formats A core aim of AgML is to provide datasets in a standardized format, enabling the synthesizing of multiple datasets into a single training pipeline. To this end, we provide annotations in the following formats: - **Image Classification**: Image-To-Label-Number - **Object Detection**: [COCO JSON](https://cocodataset.org/#format-data) - **Semantic Segmentation**: Dense Pixel-Wise ## Contributions We welcome contributions! If you would like to contribute a new feature, fix an issue that you've noticed, or even just mention a bug or feature that you would like to see implemented, please don't hesitate to use the *Issues* tab to bring it to our attention. See the [contributing guidelines](/CONTRIBUTING.md) for more information. ## Funding This project is partly funded by the [National AI Institute for Food Systems (AIFS)](https://aifs.ucdavis.edu).


نیازمندی

مقدار نام
- numpy
- matplotlib
- tqdm
- scikit-learn
- torch
- torchvision
>=5.4.1 pyyaml
- albumentations
- dict2xml
- pytorch-lightning
==0.2.4 effdet
- ensemble-boxes
- opencv-python
- opencv-python-headless
- Shapely
- semantics
- scikit-image
- boto3
- botocore
- pandas
>=6.0.0 pytest
==1.0.0 pytest-order
>=6.0.0 pytest
==1.0.0 pytest-order


نحوه نصب


نصب پکیج whl agml-0.4.6:

    pip install agml-0.4.6.whl


نصب پکیج tar.gz agml-0.4.6:

    pip install agml-0.4.6.tar.gz