معرفی شرکت ها


aglite-test-0.5.3b20221122


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

AutoML for Image, Text, and Tabular Data
ویژگی مقدار
سیستم عامل -
نام فایل aglite-test-0.5.3b20221122
نام aglite-test
نسخه کتابخانه 0.5.3b20221122
نگهدارنده []
ایمیل نگهدارنده []
نویسنده AutoGluon Community
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/awslabs/autogluon
آدرس اینترنتی https://pypi.org/project/aglite-test/
مجوز Apache-2.0
<div align="left"> <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350"> </div> ## AutoML for Image, Text, Time Series, and Tabular Data [![Latest Release](https://img.shields.io/github/v/release/awslabs/autogluon)](https://github.com/awslabs/autogluon/releases) [![Continuous Integration](https://github.com/awslabs/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/awslabs/autogluon/actions/workflows/continuous_integration.yml) [![Platform Tests](https://github.com/awslabs/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/awslabs/autogluon/actions/workflows/platform_tests-command.yml) [![Python Versions](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-blue)](https://pypi.org/project/autogluon/) [![GitHub license](docs/static/apache2.svg)](./LICENSE) [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon) [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon) [Install Instructions](https://auto.gluon.ai/stable/install.html) | Documentation ([Stable](https://auto.gluon.ai/stable/index.html) | [Latest](https://auto.gluon.ai/dev/index.html)) AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data. ## Example ```python # First install package from terminal: # pip install -U pip # pip install -U setuptools wheel # pip install autogluon # autogluon==0.5.2 from autogluon.tabular import TabularDataset, TabularPredictor train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv') predictor = TabularPredictor(label='class').fit(train_data, time_limit=120) # Fit models for 120s leaderboard = predictor.leaderboard(test_data) ``` | AutoGluon Task | Quickstart | API | |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:| | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular_prediction/tabular-quickstart.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.predictor.html#module-0) | | TextPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/text_prediction/beginner.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.predictor.html#autogluon.text.TextPredictor) | | ImagePredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/image_prediction/beginner.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.predictor.html#autogluon.vision.ImagePredictor) | | ObjectDetector | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/object_detection/beginner.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.predictor.html#autogluon.vision.ObjectDetector) | | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/index.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.predictor.html#autogluon.multimodal.MultiModalPredictor) | | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quickstart.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.predictor.html#autogluon.timeseries.TimeSeriesPredictor) | ## Resources See the [AutoGluon Website](https://auto.gluon.ai/stable/index.html) for [documentation](https://auto.gluon.ai/stable/api/index.html) and instructions on: - [Installing AutoGluon](https://auto.gluon.ai/stable/index.html#installation) - [Learning with tabular data](https://auto.gluon.ai/stable/tutorials/tabular_prediction/tabular-quickstart.html) - [Tips to maximize accuracy](https://auto.gluon.ai/stable/tutorials/tabular_prediction/tabular-quickstart.html#maximizing-predictive-performance) (if **benchmarking**, make sure to run `fit()` with argument `presets='best_quality'`). - [Learning with text data](https://auto.gluon.ai/stable/tutorials/text_prediction/beginner.html) - [Learning with image data](https://auto.gluon.ai/stable/tutorials/image_prediction/beginner.html) - [Learning with time series data](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quickstart.html) Refer to the [AutoGluon Roadmap](https://github.com/awslabs/autogluon/blob/master/ROADMAP.md) for details on upcoming features and releases. ### Scientific Publications - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) - [Multimodal AutoML on Structured Tables with Text Fields](https://openreview.net/pdf?id=OHAIVOOl7Vl) (*ICML AutoML Workshop*, 2021) ### Articles - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020) - [Accurate image classification in 3 lines of code with AutoGluon](https://medium.com/@zhanghang0704/image-classification-on-kaggle-using-autogluon-fc896e74d7e8) (*Medium*, Feb 2020) - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019) ### Hands-on Tutorials - [Practical Automated Machine Learning with Tabular, Text, and Image Data (KDD 2020)](https://jwmueller.github.io/KDD20-tutorial/) ### Train/Deploy AutoGluon in the Cloud - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) - [AutoGluon-Tabular on Amazon SageMaker](https://github.com/aws/amazon-sagemaker-examples/tree/master/advanced_functionality/autogluon-tabular-containers) - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) ## Contributing to AutoGluon We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/awslabs/autogluon/blob/master/CONTRIBUTING.md) to get started. ## Citing AutoGluon If you use AutoGluon in a scientific publication, please cite the following paper: Erickson, Nick, et al. ["AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data."](https://arxiv.org/abs/2003.06505) arXiv preprint arXiv:2003.06505 (2020). BibTeX entry: ```bibtex @article{agtabular, title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data}, author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander}, journal={arXiv preprint arXiv:2003.06505}, year={2020} } ``` If you are using AutoGluon Tabular's model distillation functionality, please cite the following paper: Fakoor, Rasool, et al. ["Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation."](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) Advances in Neural Information Processing Systems 33 (2020). BibTeX entry: ```bibtex @article{agtabulardistill, title={Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation}, author={Fakoor, Rasool and Mueller, Jonas W and Erickson, Nick and Chaudhari, Pratik and Smola, Alexander J}, journal={Advances in Neural Information Processing Systems}, volume={33}, year={2020} } ``` If you use AutoGluon's multimodal text+tabular functionality in a scientific publication, please cite the following paper: Shi, Xingjian, et al. ["Multimodal AutoML on Structured Tables with Text Fields."](https://openreview.net/forum?id=OHAIVOOl7Vl) 8th ICML Workshop on Automated Machine Learning (AutoML). 2021. BibTeX entry: ```bibtex @inproceedings{agmultimodaltext, title={Multimodal AutoML on Structured Tables with Text Fields}, author={Shi, Xingjian and Mueller, Jonas and Erickson, Nick and Li, Mu and Smola, Alex}, booktitle={8th ICML Workshop on Automated Machine Learning (AutoML)}, year={2021} } ``` ## AutoGluon for Hyperparameter Optimization AutoGluon's state-of-the-art tools for hyperparameter optimization, such as ASHA, Hyperband, Bayesian Optimization and BOHB have moved to the stand-alone package [syne-tune](https://github.com/awslabs/syne-tune). To learn more, checkout our paper ["Model-based Asynchronous Hyperparameter and Neural Architecture Search"](https://arxiv.org/abs/2003.10865) arXiv preprint arXiv:2003.10865 (2020). ```bibtex @article{abohb, title={Model-based Asynchronous Hyperparameter and Neural Architecture Search}, author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias}, journal={arXiv preprint arXiv:2003.10865}, year={2020} } ``` ## License This library is licensed under the Apache 2.0 License.


نیازمندی

مقدار نام
==0.5.3b20221122 aglite-test.core
==0.5.3b20221122 aglite-test.features
==0.5.3b20221122 aglite-test.tabular


زبان مورد نیاز

مقدار نام
>=3.7, <3.11 Python


نحوه نصب


نصب پکیج whl aglite-test-0.5.3b20221122:

    pip install aglite-test-0.5.3b20221122.whl


نصب پکیج tar.gz aglite-test-0.5.3b20221122:

    pip install aglite-test-0.5.3b20221122.tar.gz