معرفی شرکت ها


aggmap-1.1.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Jigsaw-like AggMap: A Robust and Explainable Omics Deep Learning Tool
ویژگی مقدار
سیستم عامل -
نام فایل aggmap-1.1.7
نام aggmap
نسخه کتابخانه 1.1.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده WanXiang Shen
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/shenwanxiang/bidd-aggmap/tree/master
آدرس اینترنتی https://pypi.org/project/aggmap/
مجوز -
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6474351.svg)](https://doi.org/10.5281/zenodo.6474351) [![Example](https://img.shields.io/badge/Usage-example-green)](https://github.com/shenwanxiang/bidd-aggmap/tree/master/paper/example) [![PyPI version](https://badge.fury.io/py/aggmap.svg)](https://badge.fury.io/py/aggmap) [![Documentation Status](https://readthedocs.org/projects/bidd-aggmap/badge/?version=latest)](https://bidd-aggmap.readthedocs.io/en/latest/?badge=latest) <a href="url"><img src="https://raw.githubusercontent.com/shenwanxiang/bidd-aggmap/master/docs/images/logo.png" align="left" height="170" width="130" ></a> # Jigsaw-like AggMap ## A Robust and Explainable Omics Deep Learning Tool ---- ### Installation install aggmap by: ```bash # create an aggmap env conda create -n aggmap python=3.7 conda activate aggmap pip install --upgrade pip pip install aggmap ``` ---- ### Usage ```python import pandas as pd from sklearn.datasets import load_breast_cancer from aggmap import AggMap, AggMapNet # Data loading data = load_breast_cancer() dfx = pd.DataFrame(data.data, columns=data.feature_names) dfy = pd.get_dummies(pd.Series(data.target)) # AggMap object definition, fitting, and saving mp = AggMap(dfx, metric = 'correlation') mp.fit(cluster_channels=5, emb_method = 'umap', verbose=0) mp.save('agg.mp') # AggMap visulizations: Hierarchical tree, embeddng scatter and grid mp.plot_tree() mp.plot_scatter(enabled_data_labels=True, radius=5) mp.plot_grid(enabled_data_labels=True) # Transoformation of 1d vectors to 3D Fmaps (-1, w, h, c) by AggMap X = mp.batch_transform(dfx.values, n_jobs=4, scale_method = 'minmax') y = dfy.values # AggMapNet training, validation, early stopping, and saving clf = AggMapNet.MultiClassEstimator(epochs=50, gpuid=0) clf.fit(X, y, X_valid=None, y_valid=None) clf.save_model('agg.model') # Model explaination by simply-explainer: global, local simp_explainer = AggMapNet.simply_explainer(clf, mp) global_simp_importance = simp_explainer.global_explain(clf.X_, clf.y_) local_simp_importance = simp_explainer.local_explain(clf.X_[[0]], clf.y_[[0]]) # Model explaination by shapley-explainer: global, local shap_explainer = AggMapNet.shapley_explainer(clf, mp) global_shap_importance = shap_explainer.global_explain(clf.X_) local_shap_importance = shap_explainer.local_explain(clf.X_[[0]]) ``` ### How It Works? - AggMap flowchart of feature mapping and agglomeration into ordered (spatially correlated) multi-channel feature maps (Fmaps) ![how-it-works](https://raw.githubusercontent.com/shenwanxiang/bidd-aggmap/master/docs/images/hiw.jpg) **a**, AggMap flowchart of feature mapping and aggregation into ordered (spatially-correlated) channel-split feature maps (Fmaps).**b**, CNN-based AggMapNet architecture for Fmaps learning. **c**, proof-of-concept illustration of AggMap restructuring of unordered data (randomized MNIST) into clustered channel-split Fmaps (reconstructed MNIST) for CNN-based learning and important feature analysis. **d**, typical biomedical applications of AggMap in restructuring omics data into channel-split Fmaps for multi-channel CNN-based diagnosis and biomarker discovery (explanation `saliency-map` of important features). ---- ### Proof-of-Concepts of reconstruction ability on MNIST Dataset - It can reconstruct to the original image from completely randomly permuted (disrupted) MNIST data: ![reconstruction](https://raw.githubusercontent.com/shenwanxiang/bidd-aggmap/master/docs/images/reconstruction.png) `Org1`: the original grayscale images (channel = 1), `OrgRP1`: the randomized images of Org1 (channel = 1), `RPAgg1, 5`: the reconstructed images of `OrgPR1` by AggMap feature restructuring (channel = 1, 5 respectively, each color represents features of one channel). `RPAgg5-tkb`: the original images with the pixels divided into 5 groups according to the 5-channels of `RPAgg5` and colored in the same way as `RPAgg5`. ---- ### The effect of the number of channels on model performance - Multi-channel Fmaps can boost the model performance notably: ![channel_effect](https://raw.githubusercontent.com/shenwanxiang/bidd-aggmap/master/docs/images/channel_effect.png) The performance of AggMapNet using different number of channels on the `TCGA-T (a)` and `COV-D (b)`. For `TCGA-T`, ten-fold cross validation average performance, for `COV-D`, a fivefold cross validation was performed and repeat 5 rounds using different random seeds (total 25 training times), their average performances of the validation set were reported. ---- ### Example for Restructured Fmaps - The example on WDBC dataset: click [here](https://github.com/shenwanxiang/bidd-aggmap/blob/master/paper/example/00_breast_cancer/00_WDBC_example_flow.ipynb) to find out more! ![Fmap](https://raw.githubusercontent.com/shenwanxiang/bidd-aggmap/master/docs/images/WDBC.png) ----


نیازمندی

مقدار نام
==0.3.9 umap-learn
==0.39.0 shap
==1.1.5 pandas
==0.9.1 seaborn
==0.22.2.post1 scikit-learn
- scipy
==0.13.2 joblib
==0.4.2 python-highcharts
- tqdm
- colored
==4.0.2 colorlog
- lapjv
- numpy
- numba
==2.9.1 tensorflow-gpu
- pytest


نحوه نصب


نصب پکیج whl aggmap-1.1.7:

    pip install aggmap-1.1.7.whl


نصب پکیج tar.gz aggmap-1.1.7:

    pip install aggmap-1.1.7.tar.gz