معرفی شرکت ها


aemcmc-nightly-0.0.7.dev20230217


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Miscellaneous MCMC samplers written in Aesara
ویژگی مقدار
سیستم عامل -
نام فایل aemcmc-nightly-0.0.7.dev20230217
نام aemcmc-nightly
نسخه کتابخانه 0.0.7.dev20230217
نگهدارنده ['Brandon T. Willard']
ایمیل نگهدارنده ['aesara-devs@gmail.com']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی http://github.com/aesara-devs/aemcmc
آدرس اینترنتی https://pypi.org/project/aemcmc-nightly/
مجوز -
|Tests Status| |Coverage| |Gitter| AeMCMC is a Python library that automates the construction of samplers for `Aesara <https://github.com/pymc-devs/aesara>`_ graphs that represent statistical models. Features ======== This project is currently in an alpha state, but the basic features/objectives are currently as follows: - Provide utilities that simplify the process of constructing Aesara graphs/functions for posterior and posterior predictive sampling - Host a wide array of "exact" posterior sampling steps (e.g. Gibbs steps, scale-mixture/decomposition-based conditional samplers, etc.) - Build a framework for identifying and composing said sampler steps and enumerating the possible samplers for an arbitrary model Overall, we would like this project to serve as a hub for community-sourced specialized samplers and facilitate their general use. Getting started =============== Using AeMCMC, one can construct sampling steps from a graph containing Aesara `RandomVariable`\s. AeMCMC analyzes the model graph and possibly rewrites it to find the most suitable sampler. AeMCMC can recognize closed-form posteriors; for instance the following Beta-Binomial model amounts to sampling from a Beta distribution: .. code-block:: python import aesara import aemcmc import aesara.tensor as at srng = at.random.RandomStream(0) p_rv = srng.beta(1., 1., name="p") Y_rv = srng.binomial(10, p_rv, name="Y") y_vv = Y_rv.clone() y_vv.name = "y" sample_steps, _, initial_values, _ = aemcmc.construct_sampler( {Y_rv: y_vv}, srng ) p_posterior_step = sample_steps[p_rv] aesara.dprint(p_posterior_step) # beta_rv{0, (0, 0), floatX, False}.1 [id A] # |RandomGeneratorSharedVariable(<Generator(PCG64) at 0x7F77B2831200>) [id B] # |TensorConstant{[]} [id C] # |TensorConstant{11} [id D] # |Elemwise{add,no_inplace} [id E] # | |TensorConstant{1.0} [id F] # | |y [id G] # |Elemwise{sub,no_inplace} [id H] # |Elemwise{add,no_inplace} [id I] # | |TensorConstant{1.0} [id F] # | |TensorConstant{10} [id J] # |y [id G] sample_fn = aesara.function([y_vv], p_posterior_step) AeMCMC also contains a database of Gibbs samplers that can be used to sample some models more efficiently than a general-purpose sampler like NUTS would: .. code-block:: python import aemcmc import aesara.tensor as at srng = at.random.RandomStream(0) X = at.matrix("X") # Horseshoe prior for `beta_rv` tau_rv = srng.halfcauchy(0, 1, name="tau") lmbda_rv = srng.halfcauchy(0, 1, size=X.shape[1], name="lambda") beta_rv = srng.normal(0, lmbda_rv * tau_rv, size=X.shape[1], name="beta") a = at.scalar("a") b = at.scalar("b") h_rv = srng.gamma(a, b, name="h") # Negative-binomial regression eta = X @ beta_rv p = at.sigmoid(-eta) Y_rv = srng.nbinom(h_rv, p, name="Y") y_vv = Y_rv.clone() y_vv.name = "y" sample_steps, updates, initial_values, parameters = aemcmc.construct_sampler( {Y_rv: y_vv}, srng ) print(sample_steps.keys()) # dict_keys([tau, lambda, beta, h]) In case no specialized sampler is found, AeMCMC assigns the NUTS sampler to the remaining variables. AeMCMC reparametrizes the model automatically to improve sampling if needed: .. code-block:: python import aemcmc import aesara.tensor as at srng = at.random.RandomStream(0) mu_rv = srng.normal(0, 1, name="mu") sigma_rv = srng.halfnormal(0.0, 1.0, name="sigma") Y_rv = srng.normal(mu_rv, sigma_rv, name="Y") y_vv = Y_rv.clone() sample_steps, updates, initial_values, parameters = aemcmc.construct_sampler( {Y_rv: y_vv}, srng ) print(sample_steps.keys()) # dict_keys([sigma, mu]) print(parameters.keys()) # dict_keys(['step_size', 'inverse_mass_matrix']) Installation ============ The latest release of AeMCMC can be installed from PyPI using ``pip``: :: pip install aemcmc Or via conda-forge: :: conda install -c conda-forge aemcmc The current development branch of AeMCMC can be installed from GitHub, also using ``pip``: :: pip install git+https://github.com/aesara-devs/aemcmc .. |Tests Status| image:: https://github.com/aesara-devs/aemcmc/workflows/Tests/badge.svg :target: https://github.com/aesara-devs/aemcmc/actions?query=workflow%3ATests .. |Coverage| image:: https://codecov.io/gh/aesara-devs/aemcmc/branch/main/graph/badge.svg?token=45nKZ7fDG5 :target: https://codecov.io/gh/aesara-devs/aemcmc .. |Gitter| image:: https://badges.gitter.im/aesara-devs/aesara.svg :target: https://gitter.im/aesara-devs/aesara?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge


نیازمندی

مقدار نام
>=1.18.1 numpy
>=1.4.0 scipy
>=2.8.3 aesara
>=0.0.40 aeppl
>=0.0.10 aehmc
>=1.3.2 polyagamma
- cons
- logical-unification
- etuples
- miniKanren


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl aemcmc-nightly-0.0.7.dev20230217:

    pip install aemcmc-nightly-0.0.7.dev20230217.whl


نصب پکیج tar.gz aemcmc-nightly-0.0.7.dev20230217:

    pip install aemcmc-nightly-0.0.7.dev20230217.tar.gz