معرفی شرکت ها


adversarial-labeller-0.1.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Sklearn compatiable model instance labelling tool to help validate models in situations involving data drift.
ویژگی مقدار
سیستم عامل -
نام فایل adversarial-labeller-0.1.8
نام adversarial-labeller
نسخه کتابخانه 0.1.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Kwame Porter Robinson
ایمیل نویسنده kwamepr@umich.edu
آدرس صفحه اصلی https://github.com/robinsonkwame/adversarial_labeller
آدرس اینترنتی https://pypi.org/project/adversarial-labeller/
مجوز MIT license
# adversarial_labeller --- Adversarial labeller is a sklearn compatible labeller that scores instances as belonging to the test dataset or not to help model selection under data drift. Adversarial labeller is distributed under the MIT license. ## Installation *Dependencies* Adversarial validator requires: * Python (>= 3.7) * scikit-learn (>= 0.21.0) * [imbalanced learn](>= 0.5.0) * [pandas](>= 0.25.0) *User installation* The easiest way to install adversarial validator is using ```pip pip install adversarial_labeller ``` *Example Usage* ```python import numpy as np import pandas as pd from sklearn.datasets.samples_generator import make_blobs from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier from adversarial_labeller import AdversarialLabelerFactory, Scorer scoring_metric = accuracy_score # Our blob data generation parameters for this example number_of_samples = 1000 number_of_test_samples = 300 # Generate 1d blob data and label a portion as test data # ... 1d blob data can be visualized as a rug plot variables, labels = \ make_blobs( n_samples=number_of_samples, centers=2, n_features=1, random_state=0 ) df = pd.DataFrame( { 'independent_variable':variables.flatten(), 'dependent_variable': labels, 'label': 0 # default to train data } ) test_indices = df.index[-number_of_test_samples:] train_indices = df.index[:-number_of_test_samples] df.loc[test_indices,'label'] = 1 # ... now we mark instances that are test data # Now perturb the test samples to simulate data drift/different test distribution df.loc[test_indices, "independent_variable"] +=\ np.std(df.independent_variable) # ... now we have an example of data drift where adversarial labeling can be used to better estimate the actual test accuracy features_for_labeller = df.independent_variable labels_for_labeller = df.label pipeline, flip_binary_predictions =\ AdversarialLabelerFactory( features = features_for_labeller, labels = labels_for_labeller, run_pipeline = False ).fit_with_best_params() scorer = Scorer(the_scorer=pipeline, flip_binary_predictions=flip_binary_predictions) # Now we evaluate a classifer on training data only, but using # our fancy adversarial labeller _X = df.loc[train_indices]\ .independent_variable\ .values\ .reshape(-1,1) _X_test = df.loc[test_indices]\ .independent_variable\ .values\ .reshape(-1,1) # ... sklearn wants firmly defined shapes clf_adver = RandomForestClassifier(n_estimators=100, random_state=1) adversarial_scores =\ cross_val_score( X=_X, y=df.loc[train_indices].dependent_variable, estimator=clf_adver, scoring=scorer.grade, cv=10, n_jobs=-1, verbose=1) # ... and we get ~ 0.70 - 0.68 average_adversarial_score =\ np.array(adversarial_scores).mean() # ... let's see how this compares with normal cross validation clf = RandomForestClassifier(n_estimators=100, random_state=1) scores =\ cross_val_score( X=_X, y=df.loc[train_indices].dependent_variable, estimator=clf, cv=10, n_jobs=-1, verbose=1) # ... and we get ~ 0.92 average_score =\ np.array(scores).mean() # now let's see how this compares with the actual test score clf_all = RandomForestClassifier(n_estimators=100, random_state=1) clf_all.fit(_X, df.loc[train_indices].dependent_variable) # ... actual test score is 0.70 actual_score =\ accuracy_score( clf_all.predict(_X_test), df.loc[test_indices].dependent_variable ) adversarial_result = abs(average_adversarial_score - actual_score) print(f"... adversarial labelled cross validation was {adversarial_result:.2f} points different than actual.") # ... 0.00 - 0.02 points cross_val_result = abs(average_score - actual_score) print(f"... regular validation was {cross_val_result:.2f} points different than actual.") # ... 0.23 points # See tests/ for additional examples, including against the Titanic and stock market trading ```


نیازمندی

مقدار نام
==19.3.0 attrs
==3.1.0 bleach
==2019.11.28 certifi
==1.13.2 cffi
==3.0.4 chardet
==2.8 cryptography
==0.15.2 docutils
==2.8 idna
==0.6.1 imbalanced-learn
==0.4.1 jeepney
==0.14.1 joblib
==21.0.0 keyring
==8.0.2 more-itertools
==1.18.0 numpy
==19.2 packaging
==0.25.3 pandas
==1.5.0.1 pkginfo
==0.13.1 pluggy
==1.8.1 py
==2.19 pycparser
==2.5.2 pygments
==2.4.6 pyparsing
==5.3.2 pytest
==2.8.1 python-dateutil
==2019.3 pytz
==24.0 readme-renderer
==0.9.1 requests-toolbelt
==2.22.0 requests
==0.22 scikit-learn
==1.4.1 scipy
==1.13.0 six
==0.0 sklearn
==4.41.0 tqdm
==3.1.1 twine
==1.25.7 urllib3
==0.1.7 wcwidth
==0.5.1 webencodings
==0.6.0 zipp
==1.3.0 importlib-metadata
==3.1.1 secretstorage


نحوه نصب


نصب پکیج whl adversarial-labeller-0.1.8:

    pip install adversarial-labeller-0.1.8.whl


نصب پکیج tar.gz adversarial-labeller-0.1.8:

    pip install adversarial-labeller-0.1.8.tar.gz