معرفی شرکت ها


adlfs-2022.9.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Access Azure Datalake Gen1 with fsspec and dask
ویژگی مقدار
سیستم عامل OS Independent
نام فایل adlfs-2022.9.1
نام adlfs
نسخه کتابخانه 2022.9.1
نگهدارنده ['Greg Hayes']
ایمیل نگهدارنده ['hayesgb@gmail.com']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/dask/adlfs/
آدرس اینترنتی https://pypi.org/project/adlfs/
مجوز BSD
Filesystem interface to Azure-Datalake Gen1 and Gen2 Storage ------------------------------------------------------------ [![PyPI version shields.io](https://img.shields.io/pypi/v/adlfs.svg)](https://pypi.python.org/pypi/adlfs/) [![Latest conda-forge version](https://img.shields.io/conda/vn/conda-forge/adlfs?logo=conda-forge)](https://anaconda.org/conda-forge/aldfs) Quickstart ---------- This package can be installed using: `pip install adlfs` or `conda install -c conda-forge adlfs` The `adl://` and `abfs://` protocols are included in fsspec's known_implementations registry in fsspec > 0.6.1, otherwise users must explicitly inform fsspec about the supported adlfs protocols. To use the Gen1 filesystem: ```python import dask.dataframe as dd storage_options={'tenant_id': TENANT_ID, 'client_id': CLIENT_ID, 'client_secret': CLIENT_SECRET} dd.read_csv('adl://{STORE_NAME}/{FOLDER}/*.csv', storage_options=storage_options) ``` To use the Gen2 filesystem you can use the protocol `abfs` or `az`: ```python import dask.dataframe as dd storage_options={'account_name': ACCOUNT_NAME, 'account_key': ACCOUNT_KEY} ddf = dd.read_csv('abfs://{CONTAINER}/{FOLDER}/*.csv', storage_options=storage_options) ddf = dd.read_parquet('az://{CONTAINER}/folder.parquet', storage_options=storage_options) Accepted protocol / uri formats include: 'PROTOCOL://container/path-part/file' 'PROTOCOL://container@account.dfs.core.windows.net/path-part/file' or optionally, if AZURE_STORAGE_ACCOUNT_NAME and an AZURE_STORAGE_<CREDENTIAL> is set as an environmental variable, then storage_options will be read from the environmental variables ``` To read from a public storage blob you are required to specify the `'account_name'`. For example, you can access [NYC Taxi & Limousine Commission](https://azure.microsoft.com/en-us/services/open-datasets/catalog/nyc-taxi-limousine-commission-green-taxi-trip-records/) as: ```python storage_options = {'account_name': 'azureopendatastorage'} ddf = dd.read_parquet('az://nyctlc/green/puYear=2019/puMonth=*/*.parquet', storage_options=storage_options) ``` Details ------- The package includes pythonic filesystem implementations for both Azure Datalake Gen1 and Azure Datalake Gen2, that facilitate interactions between both Azure Datalake implementations and Dask. This is done leveraging the [intake/filesystem_spec](https://github.com/intake/filesystem_spec/tree/master/fsspec) base class and Azure Python SDKs. Operations against both Gen1 Datalake currently only work with an Azure ServicePrincipal with suitable credentials to perform operations on the resources of choice. Operations against the Gen2 Datalake are implemented by leveraging [Azure Blob Storage Python SDK](https://github.com/Azure/azure-sdk-for-python). The filesystem can be instantiated with a variety of credentials, including: account_name account_key sas_token connection_string Azure ServicePrincipal credentials (which requires tenant_id, client_id, client_secret) anon location_mode: valid value are "primary" or "secondary" and apply to RA-GRS accounts The following enviornmental variables can also be set and picked up for authentication: "AZURE_STORAGE_CONNECTION_STRING" "AZURE_STORAGE_ACCOUNT_NAME" "AZURE_STORAGE_ACCOUNT_KEY" "AZURE_STORAGE_SAS_TOKEN" "AZURE_STORAGE_CLIENT_SECRET" "AZURE_STORAGE_CLIENT_ID" "AZURE_STORAGE_TENANT_ID" The default value for anon (anonymous) is True. If no explicit credentials are set, the AzureBlobFileSystem will assume the account_name points to a public container, and attempt to use an anonymous login. If anon (anonymous) is False, AzureBlobFileSystem will attempt to authenticate using Azure's DefaultAzureCredential() library. Specifics of the types of authentication permitted can be found [here](https://docs.microsoft.com/en-us/python/api/azure-identity/azure.identity.defaultazurecredential?view=azure-pythonhttps://docs.microsoft.com/en-us/python/api/azure-identity/azure.identity.defaultazurecredential?view=azure-python) The AzureBlobFileSystem accepts [all of the Async BlobServiceClient arguments](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-python). By default, write operations create BlockBlobs in Azure, which, once written can not be appended. It is possible to create an AppendBlob using an `mode="ab"` when creating, and then when operating on blobs. Currently AppendBlobs are not available if hierarchical namespaces are enabled.


نیازمندی

مقدار نام
>=1.7.0 azure-core
<0.1,>=0.0.46 azure-datalake-store
- azure-identity
>=12.12.0 azure-storage-blob
>=2021.10.1 fsspec
>=3.7.0 aiohttp
- sphinx
- myst-parser
- furo
- numpydoc


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl adlfs-2022.9.1:

    pip install adlfs-2022.9.1.whl


نصب پکیج tar.gz adlfs-2022.9.1:

    pip install adlfs-2022.9.1.tar.gz