
adept is a reinforcement learning framework designed to accelerate research
by providing:
* a modular interface for using custom networks, agents, and environments
* baseline reinforcement learning models and algorithms for PyTorch
* multi-GPU support
* access to various environments
* built-in tensorboard logging, model saving, reloading, evaluation, and
rendering
* proven hyperparameter defaults
This code is early-access, expect rough edges. Interfaces subject to change.
We're happy to accept feedback and contributions.
### Read More
* [Installation](#installation)
* [Quickstart](#quickstart)
* [Features](#features)
* [Performance](#performance)
### Documentation
* [Architecture Overview](docs/api_overview.md)
* [ModularNetwork Overview](docs/modular_network.md)
* [Resume training](docs/resume_training.md)
* Evaluate a model
* Render environment
### Examples
* Custom Network ([stub](examples/custom_network_stub.py) | example)
* Custom SubModule ([stub](examples/custom_submodule_stub.py) | [example](adept/networks/net1d/lstm.py))
* Custom Agent ([stub](examples/custom_agent_stub.py) | [example](adept/agents/actor_critic.py))
* Custom Environment ([stub](examples/custom_environment_stub.py) | [example](adept/environments/openai_gym.py))
## Installation
**Dependencies:**
* gym
* PyTorch 1.x
* Python 3.5+
* We recommend CUDA 10, pytorch 1.0, python 3.6
**From source:**
* Follow instructions for [PyTorch](https://pytorch.org/)
* (Optional) Follow instructions for
[StarCraft 2](https://github.com/Blizzard/s2client-proto#downloads)
```bash
git clone https://github.com/heronsystems/adeptRL
cd adeptRL
# Remove mpi, sc2, profiler if you don't plan on using these features:
pip install .[mpi,sc2,profiler]
```
**From docker:**
* [docker instructions](./docker/)
## Quickstart
**Train an Agent**
Logs go to `/tmp/adept_logs/` by default. The log directory contains the
tensorboard file, saved models, and other metadata.
```bash
# Local Mode (A2C)
# We recommend 4GB+ GPU memory, 8GB+ RAM, 4+ Cores
python -m adept.app local --env BeamRiderNoFrameskip-v4
# Distributed Mode (A2C, requires NCCL)
# We recommend 2+ GPUs, 8GB+ GPU memory, 32GB+ RAM, 4+ Cores
python -m adept.app distrib --env BeamRiderNoFrameskip-v4
# IMPALA (requires mpi4py and is resource intensive)
# We recommend 2+ GPUs, 8GB+ GPU memory, 32GB+ RAM, 4+ Cores
python -m adept.app impala --agent ActorCriticVtrace --env BeamRiderNoFrameskip-v4
# StarCraft 2 (IMPALA not supported yet)
# Warning: much more resource intensive than Atari
python -m adept.app local --env CollectMineralShards
# To see a full list of options:
python -m adept.app -h
python -m adept.app help <command>
```
**Use your own Agent, Environment, Network, or SubModule**
```python
"""
my_script.py
Train an agent on a single GPU.
"""
from adept.scripts.local import parse_args, main
from adept.networks import NetworkModule, NetworkRegistry, SubModule1D
from adept.agents import AgentModule, AgentRegistry
from adept.environments import EnvModule, EnvRegistry
class MyAgent(AgentModule):
pass # Implement
class MyEnv(EnvModule):
pass # Implement
class MyNet(NetworkModule):
pass # Implement
class MySubModule1D(SubModule1D):
pass # Implement
if __name__ == '__main__':
agent_registry = AgentRegistry()
agent_registry.register_agent(MyAgent)
env_registry = EnvRegistry()
env_registry.register_env(MyEnv, ['env-id-1', 'env-id-2'])
network_registry = NetworkRegistry()
network_registry.register_custom_net(MyNet)
network_registry.register_submodule(MySubModule1D)
main(
parse_args(),
agent_registry=agent_registry,
env_registry=env_registry,
net_registry=network_registry
)
```
* Call your script like this: `python my_script.py --agent MyAgent --env
env-id-1 --custom-network MyNet`
* You can see all the args [here](adept/scripts/local.py) or how to implement
the stubs in the examples section above.
## Features
### Scripts
**Local (Single-node, Single-GPU)**
* Best place to [start](adept/scripts/local.py) if you're trying to understand code.
**Distributed (Multi-node, Multi-GPU)**
* Uses NCCL backend to all-reduce gradients across GPUs without a parameter
server or host process.
* Supports NVLINK and InfiniBand to reduce communication overhead
* InfiniBand untested since we do not have a setup to test on.
**Importance Weighted Actor Learner Architectures, IMPALA (Single Node, Multi-GPU)**
* Our implementation uses GPU workers rather than CPU workers for forward
passes.
* On Atari we achieve ~4k SPS = ~16k FPS with two GPUs and an 8-core CPU.
* "Note that the shallow IMPALA experiment completes training over 200
million frames in less than one hour."
* IMPALA official experiments use 48 cores.
* Ours: 2000 frame / (second * # CPU core) DeepMind: 1157 frame / (second * # CPU core)
* Does not yet support multiple nodes or direct GPU memory transfers.
### Agents
* Advantage Actor Critic, A2C ([paper](https://arxiv.org/pdf/1708.05144.pdf) | [code](adept/agents/actor_critic.py))
* Actor Critic Vtrace, IMPALA ([paper](https://arxiv.org/pdf/1802.01561.pdf) | [code](https://arxiv.org/pdf/1802.01561.pdf))
### Networks
* Modular Network Interface: supports arbitrary input and output shapes up to
4D via a SubModule API.
* Stateful networks (ie. LSTMs)
* Batch normalization ([paper](https://arxiv.org/pdf/1502.03167.pdf))
### Environments
* OpenAI Gym
* StarCraft 2 (unstable)
## Performance
* ~ 3,000 Steps/second = 12,000 FPS (Atari)
* Local Mode
* 64 environments
* GeForce 2080 Ti
* Ryzen 2700x 8-core
* Used to win a
[Doom competition](https://www.crowdai.org/challenges/visual-doom-ai-competition-2018-track-2)
(Ben Bell / Marv2in)

* Trained for 50M Steps / 200M Frames
* Up to 30 no-ops at start of each episode
* Evaluated on different seeds than trained on
* Architecture: [Four Convs](./adept/networks/net3d/four_conv.py) (F=32)
followed by an [LSTM](./adept/networks/net1d/lstm.py) (F=512)
* Reproduce with `python -m adept.app local --logdir ~/local64_benchmark --eval
-y --nb-step 50e6 --env <env-id>`
## Acknowledgements
We borrow pieces of OpenAI's [gym](https://github.com/openai/gym) and
[baselines](https://github.com/openai/baselines) code. We indicate where this
is done.