معرفی شرکت ها


adelecv-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل adelecv-0.0.2
نام adelecv
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Denis Mamatin
ایمیل نویسنده mamatin-denis@yandex.ru
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/adelecv/
مجوز -
<div align="center"> <img src="https://github.com/AsakoKabe/AdeleCV/blob/main/docs/logo.png?raw=true" alt="drawing" width="200"/> **Auto DEap LEarning Computer Vision** **Python library and dashboard for hyperparameter search and model training for computer vision tasks based on [PyTorch](https://pytorch.org/), [Optuna](https://optuna.org/), [FiftyOne](https://docs.voxel51.com/), [Dash](https://dash.plotly.com/), [Segmentation Model Pytorch](https://github.com/qubvel/segmentation_models.pytorch).** [![Generic badge](https://img.shields.io/badge/License-MIT-<COLOR>.svg?style=for-the-badge)](https://github.com/AsakoKabe/AdeleCV/blob/main/LICENSE) [![Read the Docs](https://img.shields.io/readthedocs/smp?style=for-the-badge&logo=readthedocs&logoColor=white)](https://adelecv.readthedocs.io/en/latest/) [![GitHub Workflow Status (branch)](https://img.shields.io/github/actions/workflow/status/AsakoKabe/AdeleCV/code-style.yaml?branch=main&style=for-the-badge)](https://github.com/AsakoKabe/AdeleCV/actions/workflows/code-style.yaml) [![PyPI](https://img.shields.io/pypi/v/adelecv?color=blue&style=for-the-badge&logo=pypi&logoColor=white)](https://pypi.org/project/adelecv/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/adelecv?style=for-the-badge&color=blue)](https://pepy.tech/project/adelecv) <br> </div> The main features of this library are: - Fiftyone dataset integration with prediction visualization - Uploading your dataset in one of the popular formats, currently supported - 2 - Adding your own python class for convert dataset - Displaying training statistics in tensorboard - Support for all samples from optuna - Segmentation use smp: 9 model architectures, popular losses and metrics, see [doc smp](https://github.com/qubvel/segmentation_models.pytorch) - Convert weights to another format, currently supported - 1 (onnx) ### [📚 Project Documentation 📚](https://adelecv.readthedocs.io/en/latest/) Visit [Read The Docs Project Page](https://adelecv.readthedocs.io/en/latest/) or read following README to know more about Auto Deap Learning Computer Vision (AdeleCV for short) library ### 📋 Table of content 1. [Examples](#examples) 2. [Installation](#installation) 3. [Instruction Dashboard](#instruction-dashboard) 4. [Architecture](#architecture) 5. [Citing](#citing) 6. [License](#license) ### 💡 Examples <a name="examples"></a> - Example api [notebook](https://github.com/AsakoKabe/AdeleCV/blob/main/example/api.ipynb) - See [video](https://www.youtube.com/watch?v=3kztXbAnkYg&ab_channel=DenisMamatin) on the example of using dashboard ### 🛠 Installation <a name="installation"></a> Install torch cuda if not installed: ```bash $ pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116 ``` PyPI version: ```bash $ pip install adelecv ```` Poetry: ```bash $ poetry add adelecv ```` ### 📜 Instruction Dashboard <a name="instruction-dashboard"></a> 1. Create .env file. See [docs](https://adelecv.readthedocs.io/en/latest/config.html). Notification_LEVEL: DEBUG | INFO | ERROR Example: ``` TMP_PATH='./tmp' DASHBOARD_PORT=8080 FIFTYONE_PORT=5151 TENSORBOARD_PORT=6006 NOTIFICATION_LEVEL=DEBUG ``` 2. Run (about 30 seconds (I'm working on acceleration)). ```bash adelecv_dashboard --envfile .env ``` 3. Help ```bash adelecv_dashboard --help ``` ### 🏰 Architecture <a name="architecture"></a> ![architecture](https://github.com/AsakoKabe/AdeleCV/blob/main/docs/architecture.png?raw=true) The user can use the api or dashboard(web app). The api is based on 5 modules: - data: contains an internal representation of the dataset, classes for converting datasets, fiftyone dataset - _models: torch model, its hyperparams, functions for training - optimize: set of hyperparams, optuna optimizer - modification model: export and conversion of weights - logs: python logging The Dash library was used for dashboard. It is based on components and callbacks on these component elements. ### 📝 Citing ``` @misc{Mamatin:2023, Author = {Denis Mamatin}, Title = {AdeleCV}, Year = {2023}, Publisher = {GitHub}, Journal = {GitHub repository}, Howpublished = {\url{https://github.com/AsakoKabe/AdeleCV}} } ``` ### 🛡️ License <a name="license"></a> Project is distributed under [MIT License](https://github.com/AsakoKabe/AdeleCV/blob/main/LICENSE)


نیازمندی

مقدار نام
>=1.5.3,<2.0.0 pandas
>=3.1.0,<4.0.0 optuna
>=4.64.1,<5.0.0 tqdm
>=4.7.0.72,<5.0.0.0 opencv-python
>=1.10.5,<2.0.0 pydantic
>=2.8.1,<3.0.0 dash
>=1.4.0,<2.0.0 dash-bootstrap-components
>=1.0.0,<2.0.0 python-dotenv
>=0.11.1,<0.12.0 dash-mantine-components
>=0.1.13,<0.2.0 dash-extensions
>=2.12.0,<3.0.0 tensorboard
>=1.3.0,<2.0.0 albumentations
>=0.3.2,<0.4.0 segmentation-models-pytorch
>=0.19.1,<0.20.0 fiftyone
==0.2.1 kaleido
>=8.1.3,<9.0.0 click


زبان مورد نیاز

مقدار نام
>=3.9,<4.0 Python


نحوه نصب


نصب پکیج whl adelecv-0.0.2:

    pip install adelecv-0.0.2.whl


نصب پکیج tar.gz adelecv-0.0.2:

    pip install adelecv-0.0.2.tar.gz