معرفی شرکت ها


adeft-0.9.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Acromine based Disambiguation of Entities From Text
ویژگی مقدار
سیستم عامل -
نام فایل adeft-0.9.0
نام adeft
نسخه کتابخانه 0.9.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده adeft developers, Harvard Medical School
ایمیل نویسنده albert.steppi@gmail.com
آدرس صفحه اصلی https://github.com/indralab/adeft
آدرس اینترنتی https://pypi.org/project/adeft/
مجوز -
# Adeft [![DOI](https://joss.theoj.org/papers/10.21105/joss.01708/status.svg)](https://doi.org/10.21105/joss.01708) [![DOI](https://zenodo.org/badge/156276061.svg)](https://zenodo.org/badge/latestdoi/156276061) [![License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause) [![Tests](https://github.com/indralab/adeft/actions/workflows/tests.yml/badge.svg)](https://github.com/indralab/adeft/actions/workflows/tests.yml) [![Documentation](https://readthedocs.org/projects/adeft/badge/?version=latest)](https://adeft.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/adeft.svg)](https://badge.fury.io/py/adeft) [![Python 3](https://img.shields.io/pypi/pyversions/adeft.svg)](https://www.python.org/downloads/release/python-357/) Adeft (Acromine based Disambiguation of Entities From Text context) is a utility for building models to disambiguate acronyms and other abbreviations of biological terms in the scientific literature. It makes use of an implementation of the [Acromine](http://www.chokkan.org/research/acromine/) algorithm developed by the [NaCTeM](http://www.nactem.ac.uk/index.php) at the University of Manchester to identify possible longform expansions for shortforms in a text corpus. It allows users to build disambiguation models to disambiguate shortforms based on their text context. A growing number of pretrained disambiguation models are publicly available to download through adeft. #### Citation If you use Adeft in your research, please cite the paper in the Journal of Open Source Software: Steppi A, Gyori BM, Bachman JA (2020). Adeft: Acromine-based Disambiguation of Entities from Text with applications to the biomedical literature. *Journal of Open Source Software,* 5(45), 1708, https://doi.org/10.21105/joss.01708 ## Installation Adeft works with Python versions 3.5 and above. It is available on PyPi and can be installed with the command $ pip install adeft Adeft's pretrained machine learning models can then be downloaded with the command $ python -m adeft.download If you choose to install by cloning this repository $ git clone https://github.com/indralab/adeft.git You should also run $ python setup.py build_ext --inplace at the top level of your local repository in order to build the extension module for alignment based longform detection and scoring. ## Using Adeft A dictionary of available models can be imported with `from adeft import available_models` The dictionary maps shortforms to model names. It's possible for multiple equivalent shortforms to map to the same model. Here's an example of running a disambiguator for ER on a list of texts ```python from adeft.disambiguate import load_disambiguator er_dd = load_disambiguator('ER') ... er_dd.disambiguate(texts) ``` Users may also build and train their own disambiguators. See the documention for more info. ## Documentation Documentation is available at [https://adeft.readthedocs.io](http://adeft.readthedocs.io) Jupyter notebooks illustrating Adeft workflows are available under `notebooks`: - [Introduction](notebooks/introduction.ipynb) - [Model building](notebooks/model_building.ipynb) ## Testing Adeft uses `pytest` for unit testing, and uses Github Actions as a continuous integration environment. To run tests locally, make sure to install the test-specific requirements listed in setup.py as ```bash pip install adeft[test] ``` and download all pre-trained models as shown above. Then run `pytest` in the top-level `adeft` folder. ## Funding Development of this software was supported by the Defense Advanced Research Projects Agency under awards W911NF018-1-0124 and W911NF-15-1-0544, and the National Cancer Institute under award U54-CA225088.


نحوه نصب


نصب پکیج whl adeft-0.9.0:

    pip install adeft-0.9.0.whl


نصب پکیج tar.gz adeft-0.9.0:

    pip install adeft-0.9.0.tar.gz