معرفی شرکت ها


adaptive-sampling-2.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Sampling algorithms for molecular transitions
ویژگی مقدار
سیستم عامل -
نام فایل adaptive-sampling-2.0.3
نام adaptive-sampling
نسخه کتابخانه 2.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Andreas Hulm
ایمیل نویسنده andreas.hulm@cup.uni-muenchen.de
آدرس صفحه اصلی https://github.com/ochsenfeld-lab/adaptive_sampling
آدرس اینترنتی https://pypi.org/project/adaptive-sampling/
مجوز MIT
Adaptive Sampling ================= This package implements various sampling algorithms for the calculation of free energy profiles of molecular transitions. ## Available sampling methods include: * Adaptive Biasing Force (ABF) method [1] * Extended-system ABF (eABF) [2] * On-the-fly free energy estimate from the Corrected Z-Averaged Restraint (CZAR) [2] * Application of Multistate Bannett's Acceptance Ratio (MBAR) [3] to recover full statistical information in post-processing [4] * Well-Tempered Metadynamics (WTM) [5] and WTM-eABF [6] * Gaussian-accelerated MD (GaMD) [7] and GaWTM-eABF [8] ## Install: To install adaptive_sampling type: ```shell $ pip install adaptive-sampling ``` ## Requirements: * python >= 3.8 * numpy >= 1.19 * torch >= 1.10 * scipy >= 1.7 ## Basic Usage: To use adaptive sampling with your MD code of choice add a function called `get_sampling_data()` to the corresponding python interface that returns an object containing all required data. Hard-coded dependencies can be avoided by wrapping the `adaptive_sampling` import in a `try/except` clause: ```python class MD: # Your MD code ... def get_sampling_data(self): try: from adaptive_sampling.interface.sampling_data import SamplingData mass = ... coords = ... forces = ... epot = ... temp = ... natoms = ... step = ... dt = ... return SamplingData(mass, coords, forces, epot, temp, natoms, step, dt) except ImportError as e: raise NotImplementedError("`get_sampling_data()` is missing `adaptive_sampling` package") from e ``` The bias force on atoms in the N-th step can be obtained by calling `step_bias()` on any sampling algorithm: ```python from adaptive_sampling.sampling_tools import * # initialize MD code the_md = MD(...) # collective variable atom_indices = [0, 1] minimum = 1.0 # Angstrom maximum = 3.5 # Angstrom bin_width = 0.1 # Angstrom collective_var = [["distance", atom_indices, minimum, maximum, bin_width]] # extended-system eABF ext_sigma = 0.1 # thermal width of coupling between CV and extended variable in Angstrom ext_mass = 20.0 # mass of extended variable the_bias = eABF( ext_sigma, ext_mass, the_md, collective_var, output_freq=10, f_conf=100, equil_temp=300.0 ) for md_step in range(steps): # propagate langevin dynamics and calc forces ... bias_force = eABF.step_bias(write_output=True, write_traj=True) the_md.forces += bias_force ... # finish md_step ``` This automatically writes an on-the-fly free energy estimate in the output file and all necessary data for post-processing in a trajectory file. For extended-system dynamics unbiased statistical weights of individual frames can be obtained using the MBAR estimator: ```python import numpy as np from adaptive_sampling.processing_tools import mbar traj_dat = np.loadtxt('CV_traj.dat', skiprows=1) ext_sigma = 0.1 # thermal width of coupling between CV and extended variable # grid for free energy profile can be different than during sampling minimum = 1.0 maximum = 3.5 bin_width = 0.1 grid = np.arange(minimum, maximum, bin_width) cv = traj_dat[:,1] # trajectory of collective variable la = traj_dat[:,2] # trajectory of extended system # run MBAR and compute free energy profile and probability density from statistical weights traj_list, indices, meta_f = mbar.get_windows(grid, cv, la, ext_sigma, equil_temp=300.0) exp_U, frames_per_traj = mbar.build_boltzmann( traj_list, meta_f, equil_temp=300.0 ) weights = mbar.run_mbar( exp_U, frames_per_traj max_iter=10000, conv=1.0e-7, conv_errvec=1.0, outfreq=100, ) pmf, rho = mbar.pmf_from_weights(grid, cv[indices], weights, equil_temp=300.0) ``` ## Documentation: Code documentation can be created with pdoc3: ```shell $ pip install pdoc3 $ pdoc --html adaptive_sampling -o doc/ ``` ## References: 1. Comer et. al., J. Phys. Chem. B (2015); <https://doi.org/10.1021/jp506633n> 2. Lesage et. al., J. Phys. Chem. B (2017); <https://doi.org/10.1021/acs.jpcb.6b10055> 3. Shirts et. al., J. Chem. Phys. (2008); <https://doi.org/10.1063/1.2978177> 4. Hulm et. al., J. Chem. Phys. (2022); <https://doi.org/10.1063/5.0095554> 5. Barducci et. al., Phys. rev. lett. (2008); <https://doi.org/10.1103/PhysRevLett.100.020603> 6. Fu et. al., J. Phys. Chem. Lett. (2018); <https://doi.org/10.1021/acs.jpclett.8b01994> 7. Miao et. al., J. Chem. Theory Comput. (2015); <https://doi.org/10.1021/acs.jctc.5b00436> 8. Chen et. al., J. Chem. Theory Comput. (2021); <https://doi.org/10.1021/acs.jctc.1c00103> ## This and Related Work: 1. Hulm et. al., J. Chem. Phys. (2022); <https://doi.org/10.1063/5.0095554> 2. Dietschreit et al., J. Chem. Phys., 157, 084113 (2022).; <https://aip.scitation.org/doi/10.1063/5.0102075>


نحوه نصب


نصب پکیج whl adaptive-sampling-2.0.3:

    pip install adaptive-sampling-2.0.3.whl


نصب پکیج tar.gz adaptive-sampling-2.0.3:

    pip install adaptive-sampling-2.0.3.tar.gz