معرفی شرکت ها


adamet-2.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

AdaMet: Adaptive Metropolis for Bayesian Analysis
ویژگی مقدار
سیستم عامل -
نام فایل adamet-2.0.9
نام adamet
نسخه کتابخانه 2.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Michele Cappellari
ایمیل نویسنده michele.cappellari@physics.ox.ac.uk
آدرس صفحه اصلی http://purl.org/cappellari/software
آدرس اینترنتی https://pypi.org/project/adamet/
مجوز Other/Proprietary License
The AdaMet Package ================== **Adaptive Metropolis for Bayesian Analysis** .. image:: https://img.shields.io/pypi/v/adamet.svg :target: https://pypi.org/project/adamet/ .. image:: https://img.shields.io/badge/arXiv-1208.3522-orange.svg :target: https://arxiv.org/abs/1208.3522 .. image:: https://img.shields.io/badge/DOI-10.1093/mnras/stt562-green.svg :target: https://doi.org/10.1093/mnras/stt562 AdaMet is a well-tested Python implementation by `Cappellari et al. (2013) <https://ui.adsabs.harvard.edu/abs/2013MNRAS.432.1709C>`_ of the Adaptive Metropolis algorithm by `Haario H., Saksman E., Tamminen J. (2001) <https://doi.org/10.2307/3318737>`_. It was used in a number of published papers in the astrophysics literature. .. contents:: :depth: 1 Attribution ----------- If you use this software for your research, please cite at least `Cappellari et al. (2013)`_ where the implementation was introduced. The BibTeX entry for the paper is:: @ARTICLE{Cappellari2013a, author = {{Cappellari}, M. and {Scott}, N. and {Alatalo}, K. and {Blitz}, L. and {Bois}, M. and {Bournaud}, F. and {Bureau}, M. and {Crocker}, A.~F. and {Davies}, R.~L. and {Davis}, T.~A. and {de Zeeuw}, P.~T. and {Duc}, P.-A. and {Emsellem}, E. and {Khochfar}, S. and {Krajnovi{\'c}}, D. and {Kuntschner}, H. and {McDermid}, R.~M. and {Morganti}, R. and {Naab}, T. and {Oosterloo}, T. and {Sarzi}, M. and {Serra}, P. and {Weijmans}, A.-M. and {Young}, L.~M.}, title = "{The ATLAS$^{3D}$ project - XV. Benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, Fundamental Plane and Mass Plane}", journal = {MNRAS}, eprint = {1208.3522}, year = 2013, volume = 432, pages = {1709-1741}, doi = {10.1093/mnras/stt562} } Installation ------------ install with:: pip install adamet Without writing access to the global ``site-packages`` directory, use:: pip install --user adamet Documentation ------------- The documentation is in the docstring of the file ``adamet.py`` or on `PyPi <https://pypi.org/project/adamet/>`_. AdaMet Purpose -------------- This is the implementation by `Cappellari et al. (2013) <https://ui.adsabs.harvard.edu/abs/2013MNRAS.432.1709C>`_ of the Adaptive Metropolis algorithm by `Haario H., Saksman E., Tamminen J. (2001) <https://doi.org/10.2307/3318737>`_ for Bayesian analysis. Usage Example ------------- To learn how to use ``AdaMet`` run the example program in the ``adamet/examples`` directory, within the main package installation folder inside ``site-packages``, and read the detailed documentation in the docstring of the file ``adamet.py`` or on `PyPi <https://pypi.org/project/adamet/>`_. Note: For dimensions = 1 to 6, the optimal acceptance rates are `rate = [0.441, 0.352, 0.316, 0.279, 0.275, 0.266]` and the asymptotic value for many parameters is 23% Calling Sequence ---------------- .. code-block:: python pars, lnprob = adamet(lnprob_fun, pars0, sigpars0, bounds, nstep, labels=None, nprint=100, quiet=False, fignum=None, plot=True, labels_scaling=1, seed=None, args=(), kwargs={}) Input Parameters ---------------- lnprob_fun: callable This function returns the natural logarithm of the conditional probability of the model, given the data:: P(model | data) ~ P(data | model) P(model) pars0: array_like with shape (n,) vector with the mean of the multivariate Gaussian describing the proposal distribution from which samples are drawn. For maximum efficiency, this initial Gaussian should approximate the posterior distribution. This suggests adopting as `pars0` an initial guess for the model best-fitting parameters. sigpars0: array_like with shape (n,) vector with the dispersion `sigma` of the multivariate Gaussian describing the proposal distribution. For maximum efficiency, this initial Gaussian should approximate the posterior distribution. This suggests adopting as `sigpars` an initial guess of the uncertainty in the model parameters `pars`. bounds: 2-tuple of array_like Lower and upper bounds on independent variables. Each array must match the size of `pars`. The model probability is set to zero outside the bounds. This keyword is also used to define the plotting ranges. nsteps: integer Number of attempted moves in the chain. Typical numbers are a few thousands `nsteps`. Optional Keywords ----------------- labels: array_like with shape (n,) String labels for each parameter to be used in the `corner_plot` nprint: integer Specifies the frequency for the intermediate plots, in moves. A typical value could be `nstep/10`. plot: boolean, optional Specifies whether to show a plot of the results or not. fignum: integer, optional Specifies the figure number for the plot. labels_scaling: float Relative scaling for the plotting labels. seed: integer Seed for the random generator. Specify this value for a repeatable random sequence. args, kwargs: tuple and dict, optional Additional arguments passed to `lnprob_fun`. Both empty by default. The calling signature is `lnprob_fun(x, *args, **kwargs)`. Output Parameters ----------------- pars: array_like with shape (nsteps, n) Posterior distribution for the model parameters lnprob: array_like with shape (nsteps, n) Logarithm of the probbaility of the model, given the data, for each set of parameters in the posterior distribution `pars`. License ------- Other/Proprietary License Copyright (c) 2012-2020 Michele Cappellari This software is provided as is without any warranty whatsoever. Permission to use, for non-commercial purposes is granted. Permission to modify for personal or internal use is granted, provided this copyright and disclaimer are included in all copies of the software. All other rights are reserved. In particular, redistribution of the code is not allowed.


نحوه نصب


نصب پکیج whl adamet-2.0.9:

    pip install adamet-2.0.9.whl


نصب پکیج tar.gz adamet-2.0.9:

    pip install adamet-2.0.9.tar.gz