معرفی شرکت ها


acumos-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Acumos client library for building and pushing Python models
ویژگی مقدار
سیستم عامل -
نام فایل acumos-1.0.1
نام acumos
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Paul Triantafyllou
ایمیل نویسنده trianta@research.att.com
آدرس صفحه اصلی https://gerrit.acumos.org/r/gitweb?p=acumos-python-client.git
آدرس اینترنتی https://pypi.org/project/acumos/
مجوز Apache License 2.0
.. ===============LICENSE_START======================================================= .. Acumos CC-BY-4.0 .. =================================================================================== .. Copyright (C) 2017-2018 AT&T Intellectual Property & Tech Mahindra. All rights reserved. .. =================================================================================== .. This Acumos documentation file is distributed by AT&T and Tech Mahindra .. under the Creative Commons Attribution 4.0 International License (the "License"); .. you may not use this file except in compliance with the License. .. You may obtain a copy of the License at .. .. http://creativecommons.org/licenses/by/4.0 .. .. This file is distributed on an "AS IS" BASIS, .. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. See the License for the specific language governing permissions and .. limitations under the License. .. ===============LICENSE_END========================================================= =============================== Acumos Python Client User Guide =============================== |Build Status| ``acumos`` is a client library that allows modelers to push their Python models to the `Acumos platform <https://www.acumos.org/>`__. Installation ============ You will need a Python 3.6 or 3.7 environment in order to install ``acumos``. Python 3.8 and later can also be used starting with version 0.9.5, some AI framework like Tensor Flow was not supported in Python 3.8 and later. You can use `Anaconda <https://www.anaconda.com/download/>`__ (preferred) or `pyenv <https://github.com/pyenv/pyenv>`__ to install and manage Python environments. If you’re new to Python and need an IDE to start developing, we recommend using `Spyder <https://github.com/spyder-ide/spyder>`__ which can easily be installed with Anaconda. The ``acumos`` package can be installed with pip: .. code:: bash pip install acumos Protocol Buffers ---------------- The ``acumos`` package uses protocol buffers and **assumes you have the protobuf compiler** ``protoc`` **installed**. Please visit the `protobuf repository <https://github.com/google/protobuf/releases/tag/v3.4.0>`__ and install the appropriate ``protoc`` for your operating system. Installation is as easy as downloading a binary release and adding it to your system ``$PATH``. This is a temporary requirement that will be removed in a future version of ``acumos``. **Anaconda Users**: You can easily install ``protoc`` from `an Anaconda package <https://anaconda.org/anaconda/libprotobuf>`__ via: .. code:: bash conda install -c anaconda libprotobuf .. |Build Status| image:: https://jenkins.acumos.org/buildStatus/icon?job=acumos-python-client-tox-verify-master :target: https://jenkins.acumos.org/job/acumos-python-client-tox-verify-master/ .. ===============LICENSE_START======================================================= .. Acumos CC-BY-4.0 .. =================================================================================== .. Copyright (C) 2017-2018 AT&T Intellectual Property & Tech Mahindra. All rights reserved. .. =================================================================================== .. This Acumos documentation file is distributed by AT&T and Tech Mahindra .. under the Creative Commons Attribution 4.0 International License (the "License"); .. you may not use this file except in compliance with the License. .. You may obtain a copy of the License at .. .. http://creativecommons.org/licenses/by/4.0 .. .. This file is distributed on an "AS IS" BASIS, .. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. See the License for the specific language governing permissions and .. limitations under the License. .. ===============LICENSE_END========================================================= ============================= Acumos Python Client Tutorial ============================= This tutorial provides a brief overview of ``acumos`` for creating Acumos models. The tutorial is meant to be followed linearly, and some code snippets depend on earlier imports and objects. Full examples are available in the ``examples/`` directory of the `Acumos Python client repository <https://gerrit.acumos.org/r/gitweb?p=acumos-python-client.git;a=summary>`__. #. `Importing Acumos`_ #. `Creating A Session`_ #. `A Simple Model`_ #. `Exporting Models`_ #. `Defining Types`_ #. `Using DataFrames with scikit-learn`_ #. `Declaring Requirements`_ #. `Declaring Options`_ #. `Keras and TensorFlow`_ #. `Testing Models`_ #. `More Examples`_ Importing Acumos ================ First import the modeling and session packages: .. code:: python from acumos.modeling import Model, List, Dict, create_namedtuple, create_dataframe from acumos.session import AcumosSession Creating A Session ================== An ``AcumosSession`` allows you to export your models to Acumos. You can either dump a model to disk locally, so that you can upload it via the Acumos website, or push the model to Acumos directly. If you’d like to push directly to Acumos, create a session with the ``push_api`` argument: .. code:: python session = AcumosSession(push_api="https://my.acumos.instance.com/push") See the onboarding page of your Acumos instance website to find the correct ``push_api`` URL to use. If you’re only interested in dumping a model to disk, arguments aren’t needed: .. code:: python session = AcumosSession() A Simple Model ============== Any Python function can be used to define an Acumos model using `Python type hints <https://docs.python.org/3/library/typing.html>`__. Let’s first create a simple model that adds two integers together. Acumos needs to know what the inputs and outputs of your functions are. We can use the Python type annotation syntax to specify the function signature. Below we define a function ``add_numbers`` with ``int`` type parameters ``x`` and ``y``, and an ``int`` return type. We then build an Acumos model with an ``add`` method. **Note:** Function `docstrings <https://www.python.org/dev/peps/pep-0257/>`__ are included with your model and used for documentation, so be sure to include one! .. code:: python def add_numbers(x: int, y: int) -> int: '''Returns the sum of x and y''' return x + y model = Model(add=add_numbers) Exporting Models ================ We can now export our model using the ``AcumosSession`` object created earlier. The ``push`` and ``dump_zip`` APIs are shown below. The ``dump_zip`` method will save the model to disk so that it can be onboarded via the Acumos website. The ``push`` method pushes the model directly to Acumos. .. code:: python session.push(model, 'my-model') session.dump_zip(model, 'my-model', '~/my-model.zip') # creates ~/my-model.zip For more information on how to onboard a dumped model via the Acumos website, see the `web onboarding guide <https://docs.acumos.org/en/latest/submodules/portal-marketplace/docs/user-guides/portal-user/portal/portal-onboarding-intro.html#on-boarding-by-web>`__. **Note:** Pushing a model to Acumos will prompt you for an onboarding token if you have not previously provided one. The interactive prompt can be avoided by exporting the ``ACUMOS_TOKEN`` environment variable, which corresponds to an authentication token that can be found in your account settings on the Acumos website. Defining Types ============== In this example, we make a model that can read binary images and output some metadata about them. This model makes use of a custom type ``ImageShape``. We first create a ``NamedTuple`` type called ``ImageShape``, which is like an ordinary ``tuple`` but with field accessors. We can then use ``ImageShape`` as the return type of ``get_shape``. Note how ``ImageShape`` can be instantiated as a new object. .. code:: python import io import PIL ImageShape = create_namedtuple('ImageShape', [('width', int), ('height', int)]) def get_format(data: bytes) -> str: '''Returns the format of an image''' buffer = io.BytesIO(data) img = PIL.Image.open(buffer) return img.format def get_shape(data: bytes) -> ImageShape: '''Returns the width and height of an image''' buffer = io.BytesIO(data) img = PIL.Image.open(buffer) shape = ImageShape(width=img.width, height=img.height) return shape model = Model(get_format=get_format, get_shape=get_shape) **Note:** Starting in Python 3.6, you can alternatively use this simpler syntax: .. code:: python from acumos.modeling import NamedTuple class ImageShape(NamedTuple): '''Type representing the shape of an image''' width: int height: int Defining Unstructured Types =========================== The `create_namedtuple` function allows us to create types with structure, however sometimes it's useful to work with unstructured data, such as plain text, dictionaries or byte strings. The `new_type` function allows for just that. For example, here's a model that takes in unstructured text, and returns the number of words in the text: .. code:: python from acumos.modeling import new_type Text = new_type(str, 'Text') def count(text: Text) -> int: '''Counts the number of words in the text''' return len(text.split(' ')) def create_text(x: int, y: int) -> Text: '''Returns a string containing ints from x to y''' return " ".join(map(str, range(x, y+1))) def reverse_text(text: Text) -> Text: '''Returns an empty image buffer from dimensions''' return text[::-1] By using the `new_type` function, you inform `acumos` that `Text` is unstructured, and therefore `acumos` will not create any structured types or messages for the `count` function. You can use the `new_type` function to create dictionaries or byte string type unstructured data as shown below. .. code:: python from acumos.modeling import new_type Dict = new_type(dict, 'Dict') Image = new_type(byte, 'Image') Using DataFrames with scikit-learn ================================== In this example, we train a ``RandomForestClassifier`` using ``scikit-learn`` and use it to create an Acumos model. When making machine learning models, it’s common to use a dataframe data structure to represent data. To make things easier, ``acumos`` can create ``NamedTuple`` types directly from ``pandas.DataFrame`` objects. ``NamedTuple`` types created from ``pandas.DataFrame`` objects store columns as named attributes and preserve column order. Because ``NamedTuple`` types are like ordinary ``tuple`` types, the resulting object can be iterated over. Thus, iterating over a ``NamedTuple`` dataframe object is the same as iterating over the columns of a ``pandas.DataFrame``. As a consequence, note how ``np.column_stack`` can be used to create a ``numpy.ndarray`` from the input ``df``. Finally, the model returns a ``numpy.ndarray`` of ``int`` corresponding to predicted iris classes. The ``classify_iris`` function represents this as ``List[int]`` in the signature return. .. code:: python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier iris = load_iris() X = iris.data y = iris.target clf = RandomForestClassifier(random_state=0) clf.fit(X, y) # here, an appropriate NamedTuple type is inferred from a pandas DataFrame X_df = pd.DataFrame(X, columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width']) IrisDataFrame = create_dataframe('IrisDataFrame', X_df) # ================================================================================== # # or equivalently: # # IrisDataFrame = create_namedtuple('IrisDataFrame', [('sepal_length', List[float]), # ('sepal_width', List[float]), # ('petal_length', List[float]), # ('petal_width', List[float])]) # ================================================================================== def classify_iris(df: IrisDataFrame) -> List[int]: '''Returns an array of iris classifications''' X = np.column_stack(df) return clf.predict(X) model = Model(classify=classify_iris) Check out the ``sklearn`` examples in the examples directory for full runnable scripts. Declaring Requirements ====================== If your model depends on another Python script or package that you wrote, you can declare the dependency via the ``acumos.metadata.Requirements`` class: .. code:: python from acumos.metadata import Requirements Note that only pure Python is supported at this time. Custom Scripts -------------- Custom scripts can be included by giving ``Requirements`` a sequence of paths to Python scripts, or directories containing Python scripts. For example, if the model defined in ``model.py`` depended on ``helper1.py``: :: model_workspace/ ├── model.py ├── helper1.py └── helper2.py this dependency could be declared like so: .. code:: python from helper1 import do_thing def transform(x: int) -> int: '''Does the thing''' return do_thing(x) model = Model(transform=transform) reqs = Requirements(scripts=['./helper1.py']) # using the AcumosSession created earlier: session.push(model, 'my-model', reqs) session.dump(model, 'my-model', '~/', reqs) # creates ~/my-model Alternatively, all Python scripts within ``model_workspace/`` could be included using: .. code:: python reqs = Requirements(scripts=['.']) Custom Packages --------------- Custom packages can be included by giving ``Requirements`` a sequence of paths to Python packages, i.e. directories with an ``__init__.py`` file. Assuming that the package ``~/repos/my_pkg`` contains: :: my_pkg/ ├── __init__.py ├── bar.py └── foo.py then you can bundle ``my_pkg`` with your model like so: .. code:: python from my_pkg.bar import do_thing def transform(x: int) -> int: '''Does the thing''' return do_thing(x) model = Model(transform=transform) reqs = Requirements(packages=['~/repos/my_pkg']) # using the AcumosSession created earlier: session.push(model, 'my-model', reqs) session.dump(model, 'my-model', '~/', reqs) # creates ~/my-model Requirement Mapping ------------------- Python packaging and `PyPI <https://pypi.org/>`__ aren’t perfect, and sometimes the name of the Python package you import in your code is different than the package name used to install it. One example of this is the ``PIL`` package, which is commonly installed using `a fork called pillow <https://pillow.readthedocs.io>`_ (i.e. ``pip install pillow`` will provide the ``PIL`` package). To address this inconsistency, the ``Requirements`` class allows you to map Python package names to PyPI package names. When your model is analyzed for dependencies by ``acumos``, this mapping is used to ensure the correct PyPI packages will be used. In the example below, the ``req_map`` parameter is used to declare a requirements mapping from the ``PIL`` Python package to the ``pillow`` PyPI package: .. code:: python reqs = Requirements(req_map={'PIL': 'pillow'}) Declaring Options ================= The ``acumos.metadata.Options`` class is a collection of options that users may wish to specify along with their Acumos model. If an ``Options`` instance is not provided to ``AcumosSession.push``, then default options are applied. See the class docstring for more details. Below, we demonstrate how options can be used to include additional model metadata and influence the behavior of the Acumos platform. For example, a license can be included with a model via the ``license`` parameter, either by providing a license string or a path to a license file. Likewise, we can specify whether or not the Acumos platform should eagerly build the model microservice via the ``create_microservice`` parameter. Then thanks to the ``deploy`` parameter you can specifiy if you want to deploy this microservice automatically. (Please refer to the appropriate documentation on Acumos wiki to use this functionality based on an external jenkins server). if ``create_microservice``=True, ``deploy`` can be True or False. But if ``create_microservice``=False, ``deploy`` must be set to False if not, ``create_microservice`` will be force to True to create the micro-service and deploy it. .. code:: python from acumos.metadata import Options opts = Options(license="Apache 2.0", # "./path/to/license_file" also works create_microservice=True, # Build the microservice just after the on-boarding deploy=True) # Deploy the microservice based on an external Jenkins server session.push(model, 'my-model', options=opts) Keras and TensorFlow ==================== Check out the Keras and TensorFlow examples in the ``examples/`` directory of the `Acumos Python client repository <https://gerrit.acumos.org/r/gitweb?p=acumos-python-client.git;a=summary>`__. Testing Models ============== The ``acumos.modeling.Model`` class wraps your custom functions and produces corresponding input and output types. This section shows how to access those types for the purpose of testing. For simplicity, we’ll create a model using the ``add_numbers`` function again: .. code:: python def add_numbers(x: int, y: int) -> int: '''Returns the sum of x and y''' return x + y model = Model(add=add_numbers) The ``model`` object now has an ``add`` attribute, which acts as a wrapper around ``add_numbers``. The ``add_numbers`` function can be invoked like so: .. code:: python result = model.add.inner(1, 2) print(result) # 3 The ``model.add`` object also has a corresponding *wrapped* function that is generated by ``acumos.modeling.Model``. The wrapped function is the primary way your model will be used within Acumos. We can access the ``input_type`` and ``output_type`` attributes to test that the function works as expected: .. code:: python AddIn = model.add.input_type AddOut = model.add.output_type add_in = AddIn(1, 2) print(add_in) # AddIn(x=1, y=2) add_out = AddOut(3) print(add_out) # AddOut(value=3) model.add.wrapped(add_in) == add_out # True More Examples ============= Below are some additional function examples. Note how ``numpy`` types can even be used in type hints, as shown in the ``numpy_sum`` function. .. code:: python from collections import Counter import numpy as np def list_sum(x: List[int]) -> int: '''Computes the sum of a sequence of integers''' return sum(x) def numpy_sum(x: List[np.int32]) -> np.int32: '''Uses numpy to compute a vectorized sum over x''' return np.sum(x) def count_strings(x: List[str]) -> Dict[str, int]: '''Returns a count mapping from a sequence of strings''' return Counter(x) .. ===============LICENSE_START======================================================= .. Acumos CC-BY-4.0 .. =================================================================================== .. Copyright (C) 2017-2018 AT&T Intellectual Property & Tech Mahindra. All rights reserved. .. =================================================================================== .. This Acumos documentation file is distributed by AT&T and Tech Mahindra .. under the Creative Commons Attribution 4.0 International License (the "License"); .. you may not use this file except in compliance with the License. .. You may obtain a copy of the License at .. .. http://creativecommons.org/licenses/by/4.0 .. .. This file is distributed on an "AS IS" BASIS, .. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. See the License for the specific language governing permissions and .. limitations under the License. .. ===============LICENSE_END========================================================= ================================== Acumos Python Client Release Notes ================================== v1.0.1, 27 April 2021 ===================== * use acumos-python-client > 0.8.0 with Acumos clio `ACUMOS-4330 <https://jira.acumos.org/browse/ACUMOS-4330>`_ v1.0.0, 13 April 2021 ===================== * Fix Type issue with python 3.9 `ACUMOS-4323 <https://jira.acumos.org/browse/ACUMOS-4323>`_ v0.9.9, 13 April 2021 ===================== * Take into account "deploy" parameter in acumos python client `ACUMOS-4303 <https://jira.acumos.org/browse/ACUMOS-4303>`_ v0.9.8, 06 November 2020 ======================== * Return docker URI & added an optional flag to replace and existing model when dumping `ACUMOS-4298 <https://jira.acumos.org/browse/ACUMOS-4298>`_ * The model bundle can now be dumped directly as a zip file `ACUMOS-4273 <https://jira.acumos.org/browse/ACUMOS-4273>`_ * Allow installation on python 3.9 `ACUMOS-4123 <https://jira.acumos.org/browse/ACUMOS-4123>`_ v0.9.7, 27 August 2020 ====================== * Add support of python 3.7 & 3.8 `ACUMOS-4123 <https://jira.acumos.org/browse/ACUMOS-4123>`_ * Display acumos logo on github `ACUMOS-4094 <https://jira.acumos.org/browse/ACUMOS-4094>`_ v0.9.4, 05 April 2020 ===================== * Give image tag URL from python client `ACUMOS-3961 <https://jira.acumos.org/browse/ACUMOS-3961>`_ v0.9.3, 30 Mar 2020 =================== * Modify unstructured type section in pypi `ACUMOS-3956 <https://jira.acumos.org/browse/ACUMOS-3956>`_ * Raise an Error when using asymetric type `ACUMOS-3956 <https://jira.acumos.org/browse/ACUMOS-3956>`_ v0.9.2, 31 Jan 2020 =================== * Remove support for python 3.5 `Gerrit-6275 <https://gerrit.acumos.org/r/c/acumos-python-client/+/6275>`_ v0.9.1 ====== * add raw format support `ACUMOS-2712 <https://jira.acumos.org/browse/ACUMOS-2712>`_ * publish content type for long description `Gerrit-5504 <https://gerrit.acumos.org/r/c/acumos-python-client/+/5504>`_ v0.8.0 ====== (This is the recommended version for the Clio release) - Enhancements - Users may now specify additional options when pushing their Acumos model. See the options section in the tutorial for more information. - ``acumos`` now supports Keras models built with ``tensorflow.keras`` - Support changes - ``acumos`` no longer supports Python 3.4 v0.7.2 ====== - Bug fixes - The deprecated authentication API is now considered optional - A more portable path solution is now used when saving models, to avoid issues with models developed in Windows v0.7.1 ====== - Authentication - Username and password authentication has been deprecated - Users are now interactively prompted for an onboarding token, as opposed to a username and password v0.7.0 ====== - Requirements - Python script dependencies can now be specified using a Requirements object - Python script dependencies found during the introspection stage are now included with the model v0.6.5 ====== - Bug fixes - Don't attempt to use an empty auth token (avoids blank strings to be set in environment) v0.6.4 ====== - Bug fixes - The normalized path of the system base prefix is now used for identifying stdlib packages v0.6.3 ====== - Bug fixes - Improved dependency inspection when using a virtualenv - Removed custom packages from model metadata, as it caused image build failures - Fixed Python 3.5.2 ordering bug in wrapped model usage v0.6.2 ====== - TensorFlow - Fixed a serialization issue that occurred when using a frozen graph v0.6.1 ====== - Model upload - The JWT is now cleared immediately after a failed upload - Additional HTTP information is now included in the error message v0.6.0 ====== - Authentication token - A new environment variable ``ACUMOS_TOKEN`` can be used to short-circuit the authentication process - Extra headers - ``AcumosSession.push`` now accepts an optional ``extra_headers`` argument, which will allow users and systems to include additional information when pushing models to the onboarding server v0.5.0 ====== - Modeling - Python 3.6 NamedTuple syntax support now tested - User documentation includes example of new NamedTuple syntax - Model wrapper - Model wrapper now has APIs for consuming and producing Python dicts and JSON strings - Protobuf and protoc - An explicit check for protoc is now made, which raises a more informative error message - User documentation is more clear about dependence on protoc, and provides an easier way to install protoc via Anaconda - Keras - The active keras backend is now included as a tracked module - keras_contrib layers are now supported v0.4.0 ====== - Replaced library-specific onboarding functions with “new-style” models - Support for arbitrary Python functions using type hints - Support for custom user-defined types - Support for TensorFlow models - Improved dependency introspection - Improved object serialization mechanisms .. ===============LICENSE_START======================================================= .. Acumos CC-BY-4.0 .. =================================================================================== .. Copyright (C) 2017-2018 AT&T Intellectual Property & Tech Mahindra. All rights reserved. .. =================================================================================== .. This Acumos documentation file is distributed by AT&T and Tech Mahindra .. under the Creative Commons Attribution 4.0 International License (the "License"); .. you may not use this file except in compliance with the License. .. You may obtain a copy of the License at .. .. http://creativecommons.org/licenses/by/4.0 .. .. This file is distributed on an "AS IS" BASIS, .. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. .. See the License for the specific language governing permissions and .. limitations under the License. .. ===============LICENSE_END========================================================= ==================================== Acumos Python Client Developer Guide ==================================== Testing ======= We use a combination of ``tox``, ``pytest``, and ``flake8`` to test ``acumos``. Code which is not PEP8 compliant (aside from E501) will be considered a failing test. You can use tools like ``autopep8`` to “clean” your code as follows: .. code:: bash $ pip install autopep8 $ cd acumos-python-client $ autopep8 -r --in-place --ignore E501 acumos/ testing/ examples/ Run tox directly: .. code:: bash $ cd acumos-python-client $ export WORKSPACE=$(pwd) # env var normally provided by Jenkins $ tox You can also specify certain tox environments to test: .. code:: bash $ tox -e py36 # only test against Python 3.6 $ tox -e flake8 # only lint code A set of integration test is also available in ``acumos-package/testing/integration_tests``. To run those, use ``acumos-package/testing/tox-integration.ini`` as tox config (-c flag), onboarding tests will be ran with python 3.6 to 3.9. You will need to set your user credentials and platform configuration in ``tox-integration.ini``. .. code:: bash $ tox -c acumos-package/testing/integration_tests Packaging ========= The RST files in the docs/ directory are used to publish HTML pages to ReadTheDocs.io and to build the package long description in setup.py. The symlink from the subdirectory acumos-package to the docs/ directory is required for the Python packaging tools. Those tools build a source distribution from files in the package root, the directory acumos-package. The MANIFEST.in file directs the tools to pull files from directory docs/, and the symlink makes it possible because the tools only look within the package root.


نیازمندی

مقدار نام
- protobuf
- requests
- numpy
- dill
- appdirs
- filelock
- grpcio
- zipp
- typing-inspect


زبان مورد نیاز

مقدار نام
>=3.6, <3.10 Python


نحوه نصب


نصب پکیج whl acumos-1.0.1:

    pip install acumos-1.0.1.whl


نصب پکیج tar.gz acumos-1.0.1:

    pip install acumos-1.0.1.tar.gz