معرفی شرکت ها


acss-core-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Pipeline for accelerators
ویژگی مقدار
سیستم عامل -
نام فایل acss-core-0.0.4
نام acss-core
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Michael Boese
ایمیل نویسنده michael.boese@desy.de
آدرس صفحه اصلی https://github.com/desy-ml/acss-core
آدرس اینترنتی https://pypi.org/project/acss-core/
مجوز -
# ACSS Core ACSS (Accelerator Control and Simulation Services) provides an environment for scheduling and orchestrating of multiple intelligent agents, training and tuning of ML models, handling of data streams and for software testing and verification. User specific services are located at github (https://github.com/desy-ml/ml-pipe-services). # Dependencies Docker and docker-compose >= 1.28.0 are required. # Install Core Services Clone the acss-services repository. ``` git clone https://github.com/desy-ml/ml-pipe-services ``` ## Configure Core Services To install the core services of ACSS you need to set the following environment values in a .env file. ``` ACSS_EXTERNAL_HOST_ADDR=localhost ACSS_DB_PW=xxxx ACSS_DB_USER=xxxx ACSS_CONFIG_FILEPATH = /path/to/ml-pipe-config.yaml PATH_TO_ACSS_SERVICES_ROOT=/path/to/ml-pipe-services ``` ACSS_CONFIG_FILEPATH is the path to the yaml config file, which look like this: ```yml observer: # used to check if jbb is done url: observer:5003 event_db_pw: xxxx # event_db_url: event_db_usr: root register: # registers all services url: register:5004 simulation: # sql database which maps the machine parameter sim_db_pw: xxxx sim_db_usr: root sim_db_url: simulation_database:3306 msg_bus: # message bus # external_host_addr: localhost broker_urls: kafka_1:9092,kafka_2:9096 ``` In production replace ACSS_EXTERNAL_HOST_ADDR=localhost with the server url and set PATH_TO_ACSS_SERVICES_ROOT to the location of the cloned ml-pipe-services repository. The environment values ACSS_DB_PW and ACSS_DB_USER define the credentials for the databases used by ACSS. ## Build Docker images Open the root folder of the acss-core project: ``` cd /path/to/project ``` To build all docker images run: ```bash make build-all ``` This can take a while... Notes: After changing code you just need to rebuild the service images, which is much faster. ``` make build-service-images ``` You can check if all core services are started correctly by executing: ``` docker-compose -p pipeline ps ``` In the project root folder. ## Stop Core Services To stop de Core Services just run ``` bash make down ``` ## Tests locally Note: Docker and docker-compose => 2.80 is required to run tests locally Run all tests: ``` make tests ENV_FILE=.env ``` Run end to end tests: ``` make e2e-tests ENV_FILE=.env ``` Run integration tests: ``` make integration-tests ENV_FILE=.env ``` Run unit tests ``` make unit-tests ENV_FILE=.env ``` ## Additional Stuff ### Maxwell Log in via ssh to max-wgs.desy.de Install python 3.8.8 ``` wget https://repo.anaconda.com/archive/Anaconda3-2021.05-Linux-x86_64.sh sh Anaconda3-2021.05-Linux-x86_64.sh export PATH=$HOME/anaconda3/bin:$PATH ``` ### PyTine and K2I2K_os on Machine PETRA III The machine observer and controller for PETRA III are using the PetraAdapter which is using the libs PyTine and K2I2K_os. The Path to this libs have to be added to the PYTHONPATH. For PyTine have a look at https://confluence.desy.de/display/HLC/Developing+with+Python. K2I2K_os can be cloned via git from: ```bash git clone https://username@stash.desy.de/scm/pihp/petra3.optics.tools.git ``` ### Jupyter notebook To use KafkaPipeClient in a Jupyter notebook you need to add the virtual environment to Jupyter. First activate the python virtual environment. For Pipenv ``` bash pipenv shell ``` Start the jupyter notebook: ```bash pip install --user ipykernel ``` Note: You have to add the virtual environment to jupyter. First, activate the virtual environment. Then run: ```bash python -m ipykernel install --user --name=<myenv> ```


نیازمندی

مقدار نام
- confluent-kafka
- requests
- pyyaml
- python-logstash
- numpy
- dacite
- mysql-connector-python


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl acss-core-0.0.4:

    pip install acss-core-0.0.4.whl


نصب پکیج tar.gz acss-core-0.0.4:

    pip install acss-core-0.0.4.tar.gz