# Alibaba Cloud Quantum Development Platform (ACQDP)
## Introduction
ACQDP is an open-source platform designed for quantum computing. ACQDP provides a set of tools for aiding the development of both quantum computing algorithms and quantum processors, and is powered by an efficient tensor-network-based large-scale classical simulator.
## Computing Engine
Partially inspired by the recent quantum supremacy experiment, classical simulation of quantum circuits attracts quite a bit of attention and impressive progress has been made along this line of research to significantly improve the performance of classical simulation of quantum circuits. Key ingredients include
1. Quantum circuit simulation as tensor network contraction [[1]](#1);
2. Undirected graph model formalism[[2]](#2);
3. Dynamic slicing [[3]](#3);
4. Contraction tree [[4]](#4);
5. Contraction subtree reconfiguration [[5]](#5).
We are happy to be part of this effort.
## Use Cases
* Efficient exact contraction of intermediate-sized tensor networks
* Deployment on large-scale clusters for contracting complex tensor networks
* Efficient exact simulation of intermediate sized quantum circuit
* Classical simulation under different quantum noise models
## Documentation
[See full documentation here.](https://alibabaquantumlab.github.io/acqdp)
## Installation
### Installation from PyPI
```bash
pip install -U acqdp
```
### Installation from source code
```bash
git clone https://github.com/alibaba/acqdp
cd adqdp
pip install -e .
```
## Contributing
If you are interested in contributing to ACQDP feel free to contact me or create an issue on the issue tracking system.
## References
<a id="1">[1]</a>
Markov, I. and Shi, Y.(2008)
Simulating quantum computation by contracting tensor networks
SIAM Journal on Computing, 38(3):963-981, 2008
<a id="2">[2]</a>
Boixo, S., Isakov, S., Smelyanskiy, V. and Neven, H. (2017)
Simulation of low-depth quantum circuits as complex undirected graphical models
arXiv preprint arXiv:1712.05384
<a id="3">[3]</a>
Chen, J., Zhang, F., Huang, C., Newman, M. and Shi, Y.(2018)
Classical simulation of intermediate-size quantum circuits
arXiv preprint arXiv:1805.01450
<a id="4">[4]</a>
Zhang, F., Huang, C., Newman M., Cai, J., Yu, H., Tian, Z., Yuan, B., Xu, H.,Wu, J., Gao, X., Chen, J., Szegedy, M. and Shi, Y.(2019)
Alibaba Cloud Quantum Development Platform: Large-Scale Classical Simulation of Quantum Circuits
arXiv preprint arXiv:1907.11217
<a id="5">[5]</a>
Gray, J. and Kourtis, S.(2020)
Hyper-optimized tensor network contraction
arXiv preprint arXiv:2002.01935
<a id="6">[6]</a>
Huang, C., Zhang, F.,Newman M., Cai, J., Gao, X., Tian, Z., Wu, J., Xu, H., Yu, H., Yuan, B.,\
Szegedy, M., Shi, Y. and Chen, J. (2020)
Classical Simulation of Quantum Supremacy Circuits
arXiv preprint arXiv:2005.06787