معرفی شرکت ها


aclust-0.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

streaming agglomerative clustering
ویژگی مقدار
سیستم عامل -
نام فایل aclust-0.1.3
نام aclust
نسخه کتابخانه 0.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده brentp
ایمیل نویسنده bpederse@gmail.com
آدرس صفحه اصلی https://github.com/brentp/aclust/
آدرس اینترنتی https://pypi.org/project/aclust/
مجوز MIT
Aclust ====== Streaming agglomerative clustering with custom distance and correlation *Agglomerative clustering* is a very simple algorithm. The function `aclust` provided here is an attempt at a simple implementation of a modified version that allows a stream of input so that data is not required to be read into memory all at once. Most clustering algorithms operate on a matrix of correlations which may not be feasible with high-dimensional data. `aclust` **defers** some complexity to the caller by relying on a stream of objects that support an interface (I know, I know) of: obj.distance(other) -> numeric obj.is_correlated(other) -> bool While this does add some infrastructure, we can imagine a class with position and values attributes, where the former is an integer and the latter is a list of numeric values. Then, those methods would be implemented as: def distance(self, other): return self.position - other.position def is_correlated(self, other): return np.corrcoef(self.values, other.values)[0, 1] > 0.5 This allows the `aclust` function to be used on **any** kind of data. We can imagine that distance might return the Levenshtein distance between 2 strings while is\_correlated might indicate their presence in the same sentence or in sentences with the same sentiment. Since the input can be- and the output is- streamed, it is assumed the the objs are in sorted order. This is important for things like genomic data, but may be less so in text, where the max\_skip parameter can be set to a large value to determine how much data is kept in memory. See the function docstring for examples and options. The function signature is: aclust(object\_stream, max\_dist, max\_skip=1, linkage='single', multi\_member=False) It yields clusters (lists) of objects from the input object stream. `multi\_member` allows a feature to be a member of multiple clusters as long as it meets the distance and correlation constraints. The default is to only allow a feature to be added to the *nearest* cluster with which it is correlated. Uses ==== + Clustering methylation data which we know to be locally correlated. We can use this to reduce the number of tests (of association) from 1 test per CpG, to 1 test per correlated unit. See: https://github.com/brentp/aclust/blob/master/examples/methylation-clustering-asthma.py for a full example. ``` chrom start end n_probes probes asthma.pvalue asthma.tstat asthma.coef chr1 566570 567501 8 chr1:566570,chr1:566731,chr1:567113,chr1:567206,chr1:567312,chr1:567348,chr1:567358,chr1:567501 0.4566 -0.74 -0.06 chr1 713985 714021 3 chr1:713985,chr1:714012,chr1:714021 0.1185 -1.56 -0.13 chr1 845810 846195 3 chr1:845810,chr1:846155,chr1:846195 0.5913 0.54 0.04 chr1 848379 848440 3 chr1:848379,chr1:848409,chr1:848440 0.3399 -0.95 -0.06 chr1 854766 855046 7 chr1:854766,chr1:854824,chr1:854838,chr1:854918,chr1:854951,chr1:854966,chr1:855046 0.7482 -0.32 -0.02 chr1 870791 871546 8 chr1:870791,chr1:870810,chr1:870958,chr1:871033,chr1:871057,chr1:871308,chr1:871441,chr1:871546 0.2198 -1.23 -0.11 chr1 892857 892948 3 chr1:892857,chr1:892914,chr1:892948 0.2502 -1.15 -0.05 chr1 901062 901799 5 chr1:901062,chr1:901449,chr1:901685,chr1:901725,chr1:901799 0.6004 0.52 0.04 chr1 946875 947091 4 chr1:946875,chr1:947003,chr1:947018,chr1:947091 0.9949 0.01 0.00 ``` So we can filter on the asthma.pvalue to find regions associated with asthma. INSTALL ======= `aclust` is available on pypi, as such it can be installed with: pip install aclust Acknowledgments =============== The idea of this is taken from this paper: Sofer, T., Schifano, E. D., Hoppin, J. A., Hou, L., & Baccarelli, A. A. (2013). A-clustering: A Novel Method for the Detection of Co-regulated Methylation Regions, and Regions Associated with Exposure. Bioinformatics, btt498. The example uses a pull-request implementing GEE for python's statsmodels: https://github.com/statsmodels/statsmodels/pull/928


نحوه نصب


نصب پکیج whl aclust-0.1.3:

    pip install aclust-0.1.3.whl


نصب پکیج tar.gz aclust-0.1.3:

    pip install aclust-0.1.3.tar.gz