معرفی شرکت ها


acids-rave-2.1.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

RAVE: a Realtime Audio Variatione autoEncoder
ویژگی مقدار
سیستم عامل -
نام فایل acids-rave-2.1.6
نام acids-rave
نسخه کتابخانه 2.1.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Antoine CAILLON
ایمیل نویسنده caillon@ircam.fr
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/acids-rave/
مجوز -
![rave_logo](docs/rave.png) # RAVE: Realtime Audio Variational autoEncoder Official implementation of _RAVE: A variational autoencoder for fast and high-quality neural audio synthesis_ ([article link](https://arxiv.org/abs/2111.05011)) by Antoine Caillon and Philippe Esling. If you use RAVE as a part of a music performance or installation, be sure to cite either this repository or the article ! ## Previous versions The original implementation of the RAVE model can be restored using ```bash git checkout v1 ``` ## Installation Install RAVE using ```bash pip install acids-rave ``` You will need **ffmpeg** on your computer. You can install it locally inside your virtual environment using ```bash conda install ffmpeg ``` <!-- Detailed instructions to setup a training station for this project are available [here](docs/training_setup.md). --> ## Colab A colab to train RAVEv2 is now available thanks to [hexorcismos](https://github.com/moiseshorta) ! [![colab_badge](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ih-gv1iHEZNuGhHPvCHrleLNXvooQMvI?usp=sharing) ## Usage Training a RAVE model usually involves 3 separate steps, namely _dataset preparation_, _training_ and _export_. ### Dataset preparation You can know prepare a dataset using two methods: regular and lazy. Lazy preprocessing allows RAVE to be trained directly on the raw files (i.e. mp3, ogg), without converting them first. **Warning**: lazy dataset loading will increase your CPU load by a large margin during training, especially on Windows. This can however be useful when training on large audio corpus which would not fit on a hard drive when uncompressed. In any case, prepare your dataset using ```bash rave preprocess --input_path /audio/folder --output_path /dataset/path (--lazy) ``` ### Training RAVEv2 has many different configurations. The improved version of the v1 is called `v2`, and can therefore be trained with ```bash rave train --config v2 --db_path /dataset/path --name give_a_name ``` We also provide a discrete configuration, similar to SoundStream or EnCodec ```bash rave train --config discrete ... ``` By default, RAVE is built with non-causal convolutions. If you want to make the model causal (hence lowering the overall latency of the model), you can use the causal mode ```bash rave train --config discrete --config causal ... ``` Many other configuration files are available in `rave/configs` and can be combined. Here is a list of all the available configurations <table> <thead> <tr> <th>Type</th> <th>Name</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td rowspan=5>Architecture</td> <td>v1</td> <td>Original continuous model</td> </tr> <tr> <td>v2</td> <td>Improved continuous model (faster, higher quality)</td> </tr> <tr> <td>discrete</td> <td>Discrete model (similar to SoundStream or EnCodec)</td> </tr> <tr> <td>onnx</td> <td>Noiseless v1 configuration for onnx usage</td> </tr> <tr> <td>raspberry</td> <td>Lightweight configuration compatible with realtime RaspberryPi 4 inference</td> </tr> <tr> <td rowspan=3>Regularization (v2 only)</td> <td>default</td> <td>Variational Auto Encoder objective (ELBO)</td> </tr> <tr> <td>wassertein</td> <td>Wassertein Auto Encoder objective (MMD)</td> </tr> <tr> <td>spherical</td> <td>Spherical Auto Encoder objective</td> </tr> <tr> <td rowspan=1>Discriminator</td> <td>spectral_discriminator</td> <td>Use the MultiScale discriminator from EnCodec.</td> </tr> <tr> <td rowspan=1>Others</td> <td>causal</td> <td>Use causal convolutions</td> </tr> </tbody> </table> ### Export Once trained, export your model to a torchscript file using ```bash rave export --run /path/to/your/run (--streaming) ``` Setting the `--streaming` flag will enable cached convolutions, making the model compatible with realtime processing. **If you forget to use the streaming mode and try to load the model in Max, you will hear clicking artifacts.** ## Pretrained models Several pretrained streaming models [are available here](https://acids-ircam.github.io/rave_models_download). We'll keep the list updated with new models. ## Where is the prior ? The prior model was an experimental feature from RAVEv1 and has been removed from this repository. **However**, we will release a new improved version of the prior soon (very soon in fact). ## Discussion If you have questions, want to share your experience with RAVE or share musical pieces done with the model, you can use the [Discussion tab](https://github.com/acids-ircam/RAVE/discussions) ! ## Demonstration ### RAVE x nn~ Demonstration of what you can do with RAVE and the nn~ external for maxmsp ! [![RAVE x nn~](http://img.youtube.com/vi/dMZs04TzxUI/mqdefault.jpg)](https://www.youtube.com/watch?v=dMZs04TzxUI) ### embedded RAVE Using nn~ for puredata, RAVE can be used in realtime on embedded platforms ! [![RAVE x nn~](http://img.youtube.com/vi/jAIRf4nGgYI/mqdefault.jpg)](https://www.youtube.com/watch?v=jAIRf4nGgYI)


نیازمندی

مقدار نام
>=1.2.0 absl-py
>=0.5.0 einops
- gin-config
>=1.4.0 GPUtil
>=0.9.2 librosa
>=1.23.3 numpy
>=1.7.7 pytorch-lightning
>=6.0 PyYAML
>=1.1.2 scikit-learn
>=1.9.1 scipy
>=1.12.1 torch
>=4.64.1 tqdm
>=1.0.1 udls
>=2.4.1 cached-conv
>=1.3.4 nn-tilde
- torchaudio
- tensorboard


زبان مورد نیاز

مقدار نام
>=3.9 Python


نحوه نصب


نصب پکیج whl acids-rave-2.1.6:

    pip install acids-rave-2.1.6.whl


نصب پکیج tar.gz acids-rave-2.1.6:

    pip install acids-rave-2.1.6.tar.gz