معرفی شرکت ها


abode-0.1.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python Environment and Package Manager
ویژگی مقدار
سیستم عامل -
نام فایل abode-0.1.4
نام abode
نسخه کتابخانه 0.1.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mat Leonard
ایمیل نویسنده leonard.mat@gmail.com
آدرس صفحه اصلی https://github.com/mcleonard/abode
آدرس اینترنتی https://pypi.org/project/abode/
مجوز -
# Abode: Friendly Python Packaging Most experienced Python users know that Python packaging is rough. Abode is an attempt to make things nicer by extending [Conda](https://docs.conda.io/en/latest/index.html). It uses Conda under the hood, but makes things a bit easier and robust. Conda is by far my preferred packaging solution. It works as an environment manager (better than virtualenv in my opinion) as well as a package manager. The default repository is focused on data science software. However, Conda also installs packages from PyPI with pip. Also, unlike pip, Conda installs non-Python libraries such as MKL and CUDA that often increase operation speeds by 10-100x. **An aside:** I recommend installing [Miniconda](https://docs.conda.io/en/latest/miniconda.html) instead of the full Anaconda distribution. The vast majority of people won't need every single package in the Anaconda distribution. So save yourself some time, bandwidth, and storage. Install Miniconda, then create environments and install packages as needed. ## The Main Attraction The biggest issue with Conda is saving an environment's dependencies and sharing it across platforms. You can get the dependencies using `conda env export > environment.yml`. Say I have an environment where I have installed Flask, Numpy, and PyTorch. Even though those are the only packages I intentionally installed, Conda installs all the dependencies as well. Conda exports the environment to a YAML file that looks like: ``` name: flask channels: - pytorch - defaults dependencies: - blas=1.0=mkl - ca-certificates=2019.5.15=1 - certifi=2019.6.16=py37_1 - cffi=1.12.3=py37hb5b8e2f_0 - intel-openmp=2019.4=233 - libcxx=4.0.1=hcfea43d_1 - libcxxabi=4.0.1=hcfea43d_1 - libedit=3.1.20181209=hb402a30_0 - libffi=3.2.1=h475c297_4 - libgfortran=3.0.1=h93005f0_2 - mkl=2019.4=233 - mkl-service=2.0.2=py37h1de35cc_0 - mkl_fft=1.0.14=py37h5e564d8_0 - mkl_random=1.0.2=py37h27c97d8_0 - ncurses=6.1=h0a44026_1 - ninja=1.9.0=py37h04f5b5a_0 - numpy=1.16.4=py37hacdab7b_0 - numpy-base=1.16.4=py37h6575580_0 - openssl=1.1.1c=h1de35cc_1 - pip=19.1.1=py37_0 - pycparser=2.19=py37_0 - python=3.7.4=h359304d_1 - pytorch=1.2.0=py3.7_0 - readline=7.0=h1de35cc_5 - setuptools=41.0.1=py37_0 - six=1.12.0=py37_0 - sqlite=3.29.0=ha441bb4_0 - tk=8.6.8=ha441bb4_0 - wheel=0.33.4=py37_0 - xz=5.2.4=h1de35cc_4 - zlib=1.2.11=h1de35cc_3 - pip: - click==7.0 - flask==1.1.1 - itsdangerous==1.1.0 - jinja2==2.10.1 - markupsafe==1.1.1 - werkzeug==0.15.5 prefix: /Users/mat/miniconda3/envs/flask ``` The issue here is that defining the versions potentially breaks the environment on platforms other than the original one. I created this environment on my MacBook. It is not guaranteed that all these dependencies are available for Linux or Windows, likely breaking the environment on these platforms. Also, a lot of the time we're not concerned with the exact versions of our packages. Instead we are okay with the newest versions, or any version greater than some release with a specific feature. In these cases, locking to specific versions is overly strict. You can create essentially the same environment with this file: ``` name: flask channels: - pytorch - defaults dependencies: - numpy - pip - python=3 - pytorch - pip: - flask prefix: /Users/mat/miniconda3/envs/flask ``` Conda will take this file and solve all the necessary dependencies on whatever platform you're using. Of course if there are specific versions you want (like `python=3` here) you can define those. Abode manages Conda environments by creating and editing minimal environment files like these. Hopefully this will allow users to take advantage of the great things Conda is doing, while making the environments portable. ## Abode Dependencies - Python 3.6+ because I like f-strings - PyYAML - Conda, as noted above, I suggest installing Miniconda instead of the full Anaconda distribution ## Installation Abode is available from PyPI: ``` pip install abode ``` ## Usage **Warning:** This is very early. Use at your own risk. So far this is what I have implemented. ### Create an environment To create a new environment with Python 3 installed: ``` abode create -n env_name python=3 ``` Behind the scenes this creates an environment file and uses Conda to create an environment *from the file*. #### Create from environment file To create an environment from an environment file (a YAML file created by Abode or Conda): ``` abode create -f FILE ``` ### Enter an environment I haven't figure out how to do this without using conda in the shell, so for now: ``` conda activate env_name ``` This is pretty high priority for me. It's awkward to switch between abode and conda commands. ### Install packages Installing packages is the same as Conda: ``` abode install numpy matplotlib ``` Behind the scenes, Abode is adding these dependencies to the environment file, then updating the environment *from the file*. #### Install with pip Use the `--pip` flag to install a package with pip. ``` abode install flask --pip ``` #### Install from a non-default channel The channel option `-c` adds the channel to the environment file. ``` abode install pytorch -c pytorch ``` ### Update packages This updates all the packages in the environment without locked versions. ``` abode update ``` ### Export the environment ``` abode export > environment.yml ``` This just copies the active environment's dependency file to the new file. ### List packages in the current environment To print out the list of all installed packages, equivalent to `conda list`: ``` abode list ``` If you want to see which packages have been installed with Abode: ``` abode list -f ``` or ``` abode list --file ``` ### List environments managed with Abode ``` abode env list ``` ## Contributions Happy to work with you on this. Create an issue or a pull request. Say hi.


نیازمندی

مقدار نام
- pyyaml


نحوه نصب


نصب پکیج whl abode-0.1.4:

    pip install abode-0.1.4.whl


نصب پکیج tar.gz abode-0.1.4:

    pip install abode-0.1.4.tar.gz