معرفی شرکت ها


abexp-0.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python A/B testing experiment library
ویژگی مقدار
سیستم عامل -
نام فایل abexp-0.0.3
نام abexp
نسخه کتابخانه 0.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/abexp/
مجوز -
[comment]: <> (Modify also docs/installation.rst if change the README.md) [comment]: <> (Modify also LICENSE.rst if change the README.md) ABexp ===== [comment]: <> (Modify also docs/badges.rst if you change the badges) [comment]: <> (Modify also LICENSE.rst if you change the license) ![alt text](https://img.shields.io/badge/build-passing-brightgreen) ![alt text](https://img.shields.io/badge/docs-passing-brightgreen) ![alt text](https://img.shields.io/badge/coverage-95%25-green) ![alt text](https://img.shields.io/badge/version-0.0.1-blue) ![alt text](https://img.shields.io/badge/license-MIT-blue) **ABexp** is a ``Python`` library which aims to support users along the entire end-to-end A/B test experiment flow (see picture below). It contains A/B testing modules which use both frequentist and bayesian statistical approaches including bayesian generalized linear model (GLM). <br/> ![A/B testing experiment flow](https://github.com/PlaytikaResearch/abexp/blob/main/docs/src/img/experiment_flow.png) <br/> Installation ------------ This library is distributed on [PyPI](https://pypi.org/project/abexp/) and can be installed with ``pip``. The latest release is version ``0.0.1``. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ $ pip install abexp ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The command above will automatically install all the dependencies listed in ``requirements.txt``. Please visit the [installation](https://playtikaresearch.github.io/abexp/installation.html) page for more details. <br/> Getting started --------------- A short example, illustrating it use: ~~~~~~~~~~~~~~~ import abexp ~~~~~~~~~~~~~~~ Compute the minimum sample size needed for an A/B test experiment with two variants, so called control and treatment groups. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ from abexp.core.design import SampleSize c = 0.33 # conversion rate control group t = 0.31 # conversion rate treatment group sample_size = SampleSize.ssd_prop(prop_contr=c, prop_treat=t) # minimum sample size per each group ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <br/> Documentation ------------- For more information please read the full [documentation](https://playtikaresearch.github.io/abexp/abexp.html) and [tutorials](https://playtikaresearch.github.io/abexp/tutorials.html). <br/> Info for developers ------------------- The source code of the project is available on [GitHub](https://github.com/PlaytikaResearch/abexp). ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ $ git clone https://github.com/PlaytikaResearch/abexp.git ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can install the library and the dependencies with one of the following commands: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ $ pip install . # install library + dependencies $ pip install .[develop] # install library + dependencies + developer-dependencies $ pip install -r requirements.txt # install dependencies $ pip install -r requirements-dev.txt # install developer-dependencies ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As suggested by the authors of ``pymc3`` and ``pandoc``, we highly recommend to install these dependencies with ``conda``: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ $ conda install -c conda-forge pandoc $ conda install -c conda-forge pymc3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To create the file ``abexp.whl`` for the installation with ``pip`` run the following command: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ $ python setup.py sdist bdist_wheel ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To create the HTML documentation run the following commands: ~~~~~~~~~~~ $ cd docs $ make html ~~~~~~~~~~~ <br/> Run tests --------- Tests can be executed with ``pytest`` running the following commands: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ $ cd tests $ pytest # run all tests $ pytest test_testmodule.py # run all tests within a module $ pytest test_testmodule.py -k test_testname # run only 1 test ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <br/> License ------- [MIT License](LICENSE)


نیازمندی

مقدار نام
==0.11.2 arviz
==4.6.3 lxml
==3.3.4 matplotlib
==1.19.5 numpy
==1.1.5 pandas
==3.11.2 pymc3
==0.24.2 scikit-learn
==1.5.4 scipy
==0.12.2 statsmodels
==0.0.8 stochatreat
==3.9.2 flake8
==7.23.1 ipython
==0.8.4 nbsphinx
==1.0.2 pandoc
==2.12.1 pre-commit
==6.2.4 pytest
==52.0.0 setuptools
==4.0.0 sphinx
==0.5.2 sphinx-rtd-theme
==0.36.2 wheel


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl abexp-0.0.3:

    pip install abexp-0.0.3.whl


نصب پکیج tar.gz abexp-0.0.3:

    pip install abexp-0.0.3.tar.gz