معرفی شرکت ها


aalto-boss-1.6.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Bayesian optimization structure search
ویژگی مقدار
سیستم عامل -
نام فایل aalto-boss-1.6.3
نام aalto-boss
نسخه کتابخانه 1.6.3
نگهدارنده ['The BOSS developers team']
ایمیل نگهدارنده ['milica.todorovic@utu.fi']
نویسنده Ville Parkkinen, Henri Paulamaki, Arttu Tolvanen, Ulpu Remes, Nuutti Sten, Emma Lehto, Manuel Kuchelmeister, Tuomas Rossi, Mikael Granit" "Joakim Loefgren, Milica Todorovic,
ایمیل نویسنده -
آدرس صفحه اصلی https://gitlab.com/cest-group/boss
آدرس اینترنتی https://pypi.org/project/aalto-boss/
مجوز Apache License 2.0
BOSS ========= Bayesian Optimization Structure Search (BOSS) is a general-purpose Bayesian Optimization code. It is designed to facilitate machine learning in computational and experimental natural sciences. For a more detailed description of the code and tutorials, please consult the `user guide <https://cest-group.gitlab.io/boss>`_. Installation ------------ BOSS is distributed as a PyPI package and can be installed using pip:: python3 -m pip install aalto-boss We recommend installing BOSS inside a virtual environment (``venv``, ``conda``...). If you are not using virtual environments, we recommend performing a user-installation instead:: python3 -m pip install --user aalto-boss Basic usage ----------- As an easy example, consider the optimization of a bounded 1D function. BOSS can be run either directly from Python or via a CLI interface, both these approaches are illustrated briefly below. Note that BOSS always minimizes a given function. Python iterface ^^^^^^^^^^^^^^^^^^^^^ To run BOSS from Python we first define our objective function, by default BOSS expects this function to take a single 2D numpy array as argument (this behaviour can be modified) and return a scalar value. Next, we import the ``BOMain`` object and feed it the function plus any number of BOSS keywords, after which the optimization can be started. Once finished, the optimziation results are returned in a ``BOResults`` object. .. code-block:: python """ Using BOSS to solve the minimization problem f(x) = sin(x) + 1.5*exp(-(x-4.3)**2) , 0 < x < 7 """ import numpy as np from boss.bo.bo_main import BOMain from boss.pp.pp_main import PPMain def func(X): """ BOSS-compatible definition of the function. """ x = X[0, 0] return np.sin(x) + 1.5*np.exp(-(x - 4.3)**2) if __name__ == '__main__': bo = BOMain( func, np.array([[0., 7.]]), # bounds yrange=[-1, 1], kernel='rbf', initpts=5, iterpts=15, ) res = bo.run() # print global minimum value and location from the last iteration print(res.select('mu_glmin', -1), res.select('x_glmin', -1)) # run BOSS post-processing # creates a folder "postprocessing" with plots and data pp = PPMain(res, pp_models=True, pp_acq_funcs=True) pp.run() Command-line iterface ^^^^^^^^^^^^^^^^^^^^^ The CLI is provided by an executable called ``boss``. The user must provide an input file containing a list of BOSS keywords and a separate Python script that defines a function to be optimized. By default, BOSS expects this function to take a single 2D numpy array as argument (this behaviour can be modified) and return a scalar value. Below we define such a function in a Python script, arbitrarily named ``user_function.py``: .. code-block:: python """ user_function.py This script contains the function definition for the minimization problem f(x) = sin(x) + 1.5*exp(-(x-4.3)**2) , 0 < x < 7 Note that the bounds are specified in the BOSS input file. """ import numpy as np def func(X): """ BOSS-compatible definition of the function. """ x = X[0, 0] return np.sin(x) + 1.5*np.exp(-(x - 4.3)**2) To minimize this function subject to the constraint *0 < x < 7*, we define a BOSS input file ``boss.in``: .. code-block:: python # boss.in userfn user_function.py func bounds 0 7 yrange -1 1 kernel rbf initpts 5 iterpts 15 The optimization (including post-processing) can now be started from the command line: .. code-block:: bash $ boss op boss.in Credits ------- BOSS is under active development in the `Materials Informatics Laboratory` at the University of Turku and the `Computational Electronic Structure Theory (CEST) group <http://cest.aalto.fi/>`_ at Aalto University. Past and present members of development team include * Ville Parkkinen * Henri Paulamäki * Arttu Tolvanen * Ulpu Remes * Nuutti Sten * Emma Lehto * Tuomas Rossi * Manuel Kuchelmeister * Mikael Granit * Joakim Löfgren (maintainer) * Milica Todorović (team lead) If you wish to use BOSS in your research, please cite | Milica Todorovic, Micheal U. Gutmann, Jukka Corander, and Patrick Rinke | *Bayesian inference of atomistic structure in functional materials* | npj Comput Mater **5**, 35 (2019) | `doi: 10.1038/s41524-019-0175-2 <https://doi.org/10.1038/s41524-019-0175-2>`_ Issues and feature requests --------------------------- It is strongly encouraged to submit bug reports, questions, and feature requests via the `gitlab issue tracker <https://gitlab.com/cest-group/boss/issues>`_. The BOSS development team can be contacted by email at milica.todorovic@utu.fi


نیازمندی

مقدار نام
- GPy
>=3.0 matplotlib


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl aalto-boss-1.6.3:

    pip install aalto-boss-1.6.3.whl


نصب پکیج tar.gz aalto-boss-1.6.3:

    pip install aalto-boss-1.6.3.tar.gz